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DIMENSION REDUCTION OF THE SCHRODINGER EQUATION
WITH COULOMB AND ANISOTROPIC CONFINING POTENTIALS*
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Abstract. We consider dimension reduction for the three-dimensional (3D) Schrédinger equa-
tion with the Coulomb interaction and an anisotropic confining potential to lower-dimensional models
in the limit of infinitely strong confinement in one or two space dimensions and obtain formally the
surface adiabatic model (SAM) or surface density model (SDM) in two dimensions (2D) and the
line adiabatic model (LAM) in one dimension (1D). Efficient and accurate numerical methods for
computing ground states and dynamics of the SAM, SDM, and LAM models are presented based on
efficient and accurate numerical schemes for evaluating the effective potential in lower-dimensional
models. They are applied to find numerically convergence and convergence rates for the dimension
reduction from 3D to 2D and 3D to 1D in terms of ground state and dynamics, which confirm some
existing analytical results for the dimension reduction in the literature. In particular, we explain and
demonstrate that the standard Schrédinger—Poisson system in 2D is not appropriate to simulate a
“2D electron gas” of point particles confined to a plane (or, more generally, a 2D manifold), whereas
SDM should be the correct model to be used for describing the Coulomb interaction in 2D in which
the square root of Laplacian operator is used instead of the Laplacian operator. Finally, we report
ground states and dynamics of the SAM and SDM in 2D and LAM in 1D under different setups.
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1. Introduction. Quantum systems of interacting (nonrelativistic) fermions or
bosons can be “exactly” modeled by the linear N-particle Schrédinger equation under
a proper given binary interaction potential (e.g., Coulomb) with each particle in three
spatial dimensions (3D). Since this system is numerically intractable, usually effec-
tive “one particle” models are used, by using approximations like the Hartree(—Fock)
ansatz and mean field theory [2, 13, 14, 15, 28, 29, 30, 32, 41, 45]. Thus, the orig-
inal 3N- or 3N + 1-dimensional problem (stationary or time-dependent) can be re-
duced to one or a coupled system of nonlinear Schrédinger (NLS) equation(s) in
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3D [13, 14, 15, 28, 29, 36]. In some situations, the 3D “one particle” NLS equation
can be further reduced to lower-dimensional NLS equations in one or two space di-
mensions (1D or 2D), which decreases the numerical effort once more. The dimension
reduction results from either a geometrical symmetry (e.g., a translational invariance
in 1D or 2D) or confining the quantum particles in either one dimension (e.g., 2D
“electron sheets”) or two dimensions (e.g., 1D “quantum wires”) or even all three
space dimensions (0D “quantum dots”) [16, 34, 43]. In fact, the confinement can
be modeled by adding to the Hamiltonian operator an exterior confining potential
with a small parameter, e.g., an anisotropic harmonic oscillator potential [17, 19, 20].
The small parameter limit of infinitely strong confinement then yields the correct
asymptotic model in lower dimensions. In deriving and/or justifying rigorously math-
ematical models for low-dimensional quantum systems of fermions or bosons, physical
intuition, asymptotic analysis, and numerical simulation play essential roles.

For bosons, especially Bose-Einstein condensation (BEC) [2, 41], by using a
Hartree ansatz, the linear Schrédinger equation for N bosons under the short-range
Fermi (or contact) interaction is well approximated by the Gross—Pitaevskii equa-
tion (GPE) in 3D which is an NLS equation with cubic nonlinearity [9, 20, 41].
Rigorous mathematical justification for this reduction can be found in the litera-
ture [5, 28, 35, 36, 37] for the ground state and dynamics of BEC. In addition, the
3D GPE for BEC is further dimensionally reduced to 2D and 1D GPEs for disk-
shaped and cigar-shaped BECs, respectively, under anisotropic harmonic oscillator
potentials [18]. Recently, dimension reduction for 3D GPEs to lower dimensions was
extended to 3D GPEs with long-range dipole-dipole interaction for dipolar BEC with
arbitrary dipolar polarization angles [22, 44]. For formal derivation of these dimension
reduction and their mathematical justification and numerical comparison, we refer the
reader to [4, 8] and references therein.

For electrons, again via the “mean field limit” [13, 14, 15, 29], the linear Schro-
dinger equation for N electrons with binary Coulomb interaction between different
electrons can be approximated by a dimensionless single NLS equation with Coulomb
interaction in 3D:

1
(1.1) i Opb(x,t) = —§A+V(x)+mp Y,  x€R® >0,
where
1
(12) (,O(X, t) = F|X| * |w|2 — —AQO(X, t) = |w(X7 t)|27 X € Rga t> 0.

Here x = (z,y,2z) € R3 is the spatial Cartesian coordinates, ¢ = (x,t) is the
complex-valued wave-function describing the electron system in a mean field approx-
imation, V(x) is a given real-valued external potential, ¢ is the Coulomb potential
which is a convolution of the Coulomb kernel, i.e., #IXI’ which happens to be the
Green’s function of the Laplace operator in 3D and the density [¢|?, and & is a di-
mensionless coupling constant—the “Poisson coupling constant.” Thus the system
of (1.1)—(1.2) is usually called the Schrédinger—Poisson system (SPS) in the litera-
ture [12, 50]. In fact, the corresponding rigorous derivation of this kind of “Hartree
equations” was started from a Hartree ansatz for the many-body (e.g., N-body)
wave-function by using a “weak coupling scaling” (i.e., a factor 1/N in front of the
Coulomb interaction potential) and passing to the limit N — oo in the BBGKY
hierarchy [13, 14, 29]. For detailed derivation of the above SPS (1.1)—(1.2) and its
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mathematical justification, we refer the reader to [13, 14, 29] and references therein.
In addition, by assuming uniform distribution of the electrons in one or two spatial
dimensions and integrating the Coulomb interaction kernel #IXI in 3D along the z-

line or the (y, z)-plane, the SPS (1.1)—(1.2) in 3D can be further reduced to an SPS
in 2D and 1D, respectively,

(1.3) i0uwp(x,t) = —%A—FV(X)—FKJ@ Y, xeR? t>0,

(1.4) —Ap(x,t) = [h(x,1)]? = o(x,t) =Us(x) x [9]?, x¢€ R?, t >0,

where x = x € R in 1D with d = 1 and x = (z,y) € R? in 2D with d = 2, and Uy is
the Green’s function of the Laplace operator in d-dimensions defined as

_%|X|7 dzlv
1 _ -~ 1 1
(15) Uy(x)={ —zhnfx[, d=2, = Ual6) = a7 7 x,§ € RY,
1 o1 _ (2m)d/2 ¢
E|X| s d—-?),

where f({) is the Fourier transform of a function f(x) for x,¢ € R?, which is defined

s F(6) = mebers fua F00) 6% dx.

Another way to reduce the SPS (1.1)—(1.2) in 3D to lower spatial dimensions is
through applying strong confinement in one or two spatial dimensions. In fact, the
spatial confinement is an essential feature of many “nanoscale devices” and has gained
much attention from both experimental and mathematical studies [3, 31, 40, 42].
Although the SPS (1.3)-(1.4) in 2D or 1D has been used in some of the literature
[1, 3, 12, 25, 27, 42, 43, 48, 50] to simulate low-dimensional quantum systems of
fermions such as 2D “electron sheets” or 1D “quantum wires,” it is highly debated
or mathematically mysterious whether the above SPS is an appropriate model for
these confining low-dimensional quantum systems. In fact, intuitively point particles
confined to a 2D manifold still interact with the Coulomb interaction potential at
O(ﬁ) in 2D; thus it seems that the SPS (1.3)—(1.4) in 2D is not an appropriate
model. There have been some studies on finding appropriate mathematical models and
providing mathematical and/or numerical justification for the quantum degenerated
electron gas (degenerated Fermi gas) occurring in semiconductor devices due to the
anisotropic confining potential [40]. Two asymptotic quantum transport models for
2D electron gas, namely, the SAM and the SDM, have been proposed from the SPS
(1.1)—(1.2) in 3D by applying strong confinement in 1D [19, 40]. In addition, by using
an interesting scaling in the 3D SPS (1.1)—(1.2), i.e., rescaling x in an appropriate
way to the confinement strength, the NLS equation with cubic nonlinearity in 1D was
obtained [17].

The main aim of this paper is to derive asymptotically and systematically dimen-
sion reduction of the 3D SPS (1.1)-(1.2) under an anisotropic confining potential to
lower-dimensional models in the limit of infinitely strong confinement in one or two
spatial dimensions and to provide numerical and/or mathematical justification for
this dimension reduction. For this purpose, we take the anisotropic confining poten-
tial V(x) in (1.1) of the following forms with x; = (z,y) € R? and x = (x,2) € R*:

Case 1 (pancake-shaped). The potential is strongly confined in the vertical z-
direction as

1
(1.6) V(x)=Va(x1)+ 5_2Vz (g) , x€R3 satisfying ~ lim V,(z) = oc.

|z| =00
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Case 11 (cigar-shaped). The potential is strongly confined in the x -plane as

1
(1.7) V(x) =Vi(z) + 5_2Vl (%) , x€R} satisfying lim V) (x,)=o0.

|x 1 |—o0

In both cases, 0 < ¢ <« 1 is a small dimensionless parameter describing the
strength of the confinement. In Case I, when e — 0, the 3D SPS (1.1)—(1.2) can be
reduced to a surface adiabatic model (SAM) or surface density model (SDM) in 2D,
and, respectively, in Case II, it can be reduced to a line adiabatic model (LAM) in 1D.
Numerical methods are presented for discretizing the SAM and SDM in 2D and LAM
in 1D. Based on the numerical methods, the dimension reduction is studied numeri-
cally and the convergence rates are obtained from the numerical results. Comparisons
with the SPS (1.3)—(1.4) in 2D and 1D are reported numerically. In addition, the SAM
and SDM in 2D and LAM in 1D are applied to simulate low-dimensional quantum
systems of electrons such as “electron sheets” or graphene in 2D or “quantum wires”
in 1D.

The paper is organized as follows. In section 2, dimension reduction is presented
in detail for the 3D SPS (1.1)-(1.2) to 2D and 1D when the potential is chosen as
described in Cases I and II, respectively. In section 3, numerical methods are proposed
for discretizing the SAM and SDM in 2D and LAM in 1D. Extensive numerical results
are reported to confirm the dimension reduction and to show convergence rates and
applications in section 4. Finally, some concluding remarks are drawn in section 5.

2. Derivation of low-dimensional models. In this section, we will present
detailed dimension reduction for the 3D SPS (1.1)—(1.2) to 2D and 1D. Assume the
initial data for the 3D SPS is given as

(2.1) ¥(x,0) = o(x), x € R3.
Define the linear operator H as

1 3
(2.2) H = —§A+V(X), x € R°.

2.1. From 3D to 2D. When the potential V(x) in (1.1) is chosen as Case I
(1.6), then the linear operator H can be split as

1 1 1z 1
(23)  H=—3AL+Va(x1) — 50 + Ve (g) = Ho+ H: = Ho + < H:,

where A | = Oy + Oyy, 2 = €Z and

o1 Lo Ay L 1, NPT
(2.4) HE = 2322+€2Vz(5)_62[ 2822+‘/;(z)] = 5 H,
1 1
(2.5) H, = —§AJ_ +‘/2(XJ_), H; = —5555 +V, (5)

For H; in (2.5), due to (1.6), we know that the following eigenvalue problem admits
distinct orthonormal eigenfunctions:

(2.6) Hox(®) = | =505 + V. ()| x(2) = (). ZeR,
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with |[x]|? := [ [x(2)|* dZ = 1. In fact, they can be chosen to form an orthogonal basis
of L2(R) and be denoted as {xx(Z)} with corresponding eigenvalues {u;} satisfying
po < p1 < po < -+ Thus (x5 (2), pg) with

j” 1 - 1 z
2.7 e = Lk £(2) = —= = (—) k=0,1,2,...,
( ) K 22 Xk(z) \/EXIC(Z) \/ng -

are orthonormal eigenpairs to the operator H:.

For simplicity of notation, here we only consider the “pure state” case in the
strong confinement direction, especially the “ground state” case [19, 20]. Assuming
that the initial data 1o in (2.1) satisfies

(2.8) Po(x) = a(x1 ) x5 (2), x € R3, 0<ex,

noting the scale separation in (2.3), when ¢ — 0%, the solution % to the 3D SPS
(1.1)—(1.2) can be well approximated as

(2.9) Y(x,t) ~ Pa(xy,t) X5(2) e THot xeR3 ¢>0.

Plugging (2.9) into (1.1) and then multiplying by x5(z)e’#0t, integrating for z over
R, and noticing (1.2), formally we obtain

1
(2.10)  i0uha(x,t) = |:—§AL—|—V2(XL)+g‘P§(XL,t)] Y2, x; €R? t>0,

where

— 00

£ 2 L e(\2
= Az [/R XO(Z) XO(Z) 2dZdZ"| |¢2(Xl,t)|2dxl

diest) = [N [ (i) as

22my/|xL — X 2+ (z — 2)

(2.11) = (Us * [$o|*)(x1,1),  x1 €R? >0,
with
1 £ 2 ()2 1 2 2
U25( L) - XO(z) XO('Z ) P Z/ - XO(z) XO(z) dZdZ’
2 Jro LB F (- 22 2 Juo JRLP+ (2 2

U+v 2 u—

1 oxo (M) xo (%5
e JPree
In fact, (2.10) together with (2.11) is usually called the surface adiabatic model (SAM)

[20]. In addition, multiplying (2.1) by x§(z) and integrating for z over R, noting (2.7),
we get the initial data for the SAM (2.10)—(2.11) as

2
(2.12) ) dudw, x; € R%

(2.13)  a(x1,0) = / Yo(x1,2)x5(2)dz = \/E/ Yo(xL,eu)xo(u)du, x, € R%
R R
Letting e — 07 in (2.12) and (2.11), formally we get

(2.14)  Us(xy) — Us(x1), x, € R?,

27T|XJ_| .
(2.15) gpg(xj_,t)—>(U2*|z/12|2)(xL,t) = pa(x,t), x, €R?, t>0.
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This immediately suggests the following surface density model (SDM) in 2D:
1
(2.16) Z'aﬂﬁg(xl,t): —§AL+VQ(XL)+S@Q(XLJ) g, X | ER2, t>0.

In fact, the effective potential 9 in (2.15) also satisfies a fractional differential equa-
tion, namely, the “square root of Laplacian” equation [21, 33]:

(2.17) (ALY 2o (xu,t) = [ha(x, )%, x. €R% lim  g(x1,t) =0, t>0.

|x 1 |—o0

Specifically, if the confinement in the z-direction is chosen as a harmonic oscillator
potential, e.g.,

then we have

N

z

1
(2.18) Lo = Xo(2) = —a¢ %, Z€ R.
T

1
27
Plugging (2.18) into (2.12), we obtain [22]

w402 u?
Us(x1) = — [ — 7 __qua _°
X|)=— udv =
2R U2 Je [x |2 + &2u? (2m)3/2 Jo /IxL|? + e2u2
2
2 e e~T
2.19 = du, x| € R2
(2.19) @32 Jo /XL + 2 +

Taking the Fourier transform in (2.19), we get [22]

2

2.2
~ 1 e~ 2 e [ e T
2.20 Us = — ——ds = — —d R?.
( ) 2(9) 27r2/R |€]% + s2 s 7r2/0 e2|€]? + s2 % ‘€

From (2.19) and (2.20), asymptotically, for any fixed e > 0, we have [22]

[ln|XL| +1n(2€)—|—C], |XL| — 0,

2
|x1 | = oo, X €RY,

2mx |

1
@21)  Ui(xi)w { Ve

1
(2.22) Us(6) ~ { 2rlE €] =0,

EeR?,

vor e

where C' is a constant. In addition, when ¢ — 0% in (2.19) and (2.20), formally we
get

1 ~

€ 1 2
U(&)%m, XL,&ER.

(223) UZ(XJ_) — m, 2

2.2. From 3D to 1D. When the potential V(x) in (1.1) is chosen as Case II
(1.7), then the linear operator H can be split as

1 1 X 1 1
(224) H= _§AL + ?VL (?L) - §8zz +Vi(z) = H + H, = 6_2HI +H,
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where A | = 0y, +8yy, X| =€ il, AI = 0zz + 8@@, and
1 1 X 1 1 ~ 1
1 ~ 1

(226) HI:_5A1+VL (XL), H, = _58ZZ+V1 (Z)

For Hy in (2.26), due to (1.7), we know that the following eigenvalue problem admits
distinct orthonormal eigenfunctions:

220 HICED) = | pAr VLR (R = NED. e R

with [|¢]|* := [go [¢(X1)[*dXL = 1. In fact, they can be chosen to form an orthogonal

basis of L?(R?) and be denoted by {Cx(X1)} with corresponding eigenvalues {\;}
satisfying Ao < Ay < Ag < ---. Thus (¢§, A%) with

A 1 X
/\;:6—’;, Gixs) = —G (f) k=0,1,2,...,

are orthonormal eigenpairs to the operator HY .

Again, here we only consider the “pure state” case in the strong confinement
direction, especially the “ground state” case [19, 20]. Similarly, we assume that the
initial data v in (2.1) satisfies

(2.28) Yo(x) = 1 (2)¢5(x1),  x€R3, 0<e<1;

noting the scale separation in (2.24), when ¢ — 0%, the solution v to the 3D SPS
(1.1)—(1.2) can be approximated as

(2.29) Y(x,t) =y (z,1) C§(x1) e xeR3, t>0.

iIAGt

Plugging (2.29) into (1.1) and then multiplying by (§(x,)e* o’ integrating for x

over R?, and noticing (1.2), formally we obtain

1
(2.30) 10 (z,t) = [—5@ +Vi(z) + % ¢i(z, t)} U1, zeR, t>0,

where

Gt = [ IGO0 i+ (01GP)| dxs

€ (~! 2
- R e s
(2.31) = (Uf = [¥a*)(zt),  z€R, t>0,

with

€ /7 \2
Ui(2) =5 /R/R Glxu) Glxy) dx, dx',

VIR + [x =/, 2
2
_ / CO XJ—) CO(XL) dx J_dX/J_
R

2 JR2 \/|Z|2+€2|XJ_ _XL|2

u+v —v\2
(2.32) / G C (57) dudv, z €eR.
r2 JR2 |z|2 + e2|ul?
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Equation (2.30) together with (2.31) is named as line adiabatic model (LAM). In
addition, multiplying (2.1) by (§(x.) and integrating for x, over R?, we get the
initial data for LAM as

(2.33)  ¥1(2,0) = /R2 Yo(x1,2) (5(x1)dx, = €/R2 Yo(eu, 2) (p(u)du, =z €R.

Again, if letting ¢ — 07 in (2.32), formally we get

1

(2.34) GORE vk

= Ui(2), zeR.

In fact, Uy(z) is too singular at z = 0 to be a kernel in 1D. The mathematical
difficulty of defining the convolution with the correct interaction potential for point
particles in 1D is an indication that the contradiction between Heisenberg’s uncer-
tainty principle and the complete confinement is even more pronounced in 1D than
in 2D.

Specifically, if the confinement in the x -plane is chosen as a harmonic oscillator
potential, e.g.,

1
Vi(x1) = 5 («® +9°), x, = (z,y) € R?
then we have
1 z2+y2
(2.35) Ao=1,  Go(x1)= ﬁ( 2

Plugging (2.35) into (2.32), we obtain

Uil ~ 3n2 /Rz/R2 |z|2+£2|u|

2
(2.36) ¢ L [T e R
. = — Z € K.
4 0oV 2’2 + 2y 452 0o VvV Z2 + u

Taking the Fourier transform in (2.36), we get [22]

lul?

————du
Rz \/|2|2 + €2|ul?

1 e 7° 5
frnd S ’
2W2r /0 HEE 2\/27r / 82|£|2

From (2.36) and (2.37), asymptotically, for any fixed & > 0, we have [22]

(2.37)  U5(€)

& eR.

Vem (1 f21
(2.38) U (2) ~ { 14 (s \/:52 |Z|) , 2l =0, 2 €R,
2[z]° |Z| — 09,
~ In2 — v, —2In(e , — 0,
(2.39) b (e) ~ 2r[ g (elehl, [l ceR.
ma €] — oo,

where 7, is the Euler-Mascheroni constant. In addition, when e — 0% in (2.36) and
(2.37), formally we get

(2.40) US(2) — ﬁ Us(¢) > 00,  z,E€R.
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3. Models in a unified formulation. The 2D SAM (2.10)—(2.11) with (2.19)
(or (2.12)) and SDM (2.16)—(2.17) and 1D LAM (2.30)-(2.31) with (2.36) (or (2.32))
can be written in a unified formulation as a general nonlinear Schrédinger equation
(GNLS), which is the same as the SPS (1.3)—(1.4) with different interaction kernels
in different cases:

(241)  idb(x,t) = —%A LV +Be| b xeRL >0,
(2.42) ox,t) =Ugx [¥]?, xeRY t>0,
where x = (2,y) and 8 = § if d =2, and x =2 and 8 = 5= if d = 1, and
Us (), ,Tz i ‘;‘—L d =2 and SAM,
(243) Ua(x) =1 sz < Ua© =9 z=a d =2 and SDM,
Ut (), s o7 fersds, d=1and LAM.

For studying the dynamics of GLSE, the following initial condition is usually given:

(2.44) Y(x,0) = Po(x), xR

2.4. Conservation laws and ground states. Two important conserved quan-
tities for the GNLS (2.41)—(2.42) are the mass or normalization,

(2.45) N(t) = N@(t) = [ |o(x1)* dx E/ [o(x)[* dx, >0,
R4 Rd
and the energy,

B

B@) = B0.0) = [ 51906 0P + (Voo + 50 10)) ot ax

20 = [ [§|w<x,t>|2+(v<x>+§w) w}(x,wﬂ dx=E(0), 20,

The ground state ¢4 := ¢4(x) of the GNLS (2.41)(2.42) is usually defined as
the minimizer of the energy functional over the unit sphere S = {¢ := ¢(x) | [|¢[|* =
1, E(¢) < oo}

(2.47) EY := E(¢y) = min E(¢),

peS

where

B@) = [ 519060+ (VO + 560 ) 1060R | ax, (0 = Ui o

It is easy to see that the Euler-Lagrange equation of the above nonconvex minimiza-
tion problem is the following nonlinear eigenvalue problem, i.e., find 4 € R and ¢ € S
such that

248) ol = |~5ATVE+ 09 6. o) =Uarlo,  xeRS
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where the eigenvalue p (or chemical potential) can be computed as
1
i o) =[5 IT0607 + (V) + 5 (Wa s 10) lof ax

= B@)+ 5 [ UarloP)loP dx=B@) + 5 [ pblot dx.

For existence and uniqueness of the ground state to (2.47), we refer the reader
to [4, 5]; for well-posedness and dynamical properties of the SPS (1.3)—(1.4) and the
GNLS (2.41)—(2.42), we refer the reader to [4, 5, 23, 38] and references therein; and
for analytical and asymptotic analysis on dimension reduction from the 3D SPS to
2D SAM and SDM, we refer the reader to [19] and references therein.

3. Numerical methods. In order to verify numerically the dimension reduc-
tion from the 3D SPS (1.1)—(1.2) to the 2D SAM (2.10)—(2.11) with (2.19) and SDM
(2.16)—(2.17) and 1D LAM (2.30)—(2.31) with (2.36), to find numerically the conver-
gence rates for the dimension reduction, and to simulate numerically low-dimensional
quantum systems based on the 2D and 1D models, in this section, we briefly introduce
numerical methods for computing ground states and dynamics of the 2D SAM and
SDM and 1D LAM as well as 2D SPS models. For efficient and accurate numeri-
cal methods for computing ground states and dynamics of the SPS (1.3)—(1.4) in 3D
and 1D, we refer the reader to [26, 50] and references therein. In practical computa-
tions, the whole space problems (2.41)—(2.42) and (2.47) are usually truncated into a
bounded computational domain @ C R? which is usually chosen as an interval [a, b]
in 1D, a rectangle [a, b] X [¢,d] in 2D, and a box [a, ] X [¢,d] X [e, f] in 3D. Choose a
time step 7 := At > 0 and mesh sizes h, = b’T‘l, hy = %, and h, = fze with J, K,
and L positive even integers, and denote time steps as t,, = n7 forn =0,1,..., and
grid points as x; = a+ jh, for j =0,1,...,J, yp =c+khy for k=0,1,..., K, and
zi=e+1lh, forl=0,1,... L.

3.1. A method for computing ground states. For computing the ground
states of (2.47), we adapt the gradient flow with discrete normalization (GFDN),
which has been widely and successfully used for computing ground states of the Gross—
Pitaevskii equation (GPE) with application to Bose-Einstein condensation (BEC)
[6, 7]. From time ¢ = ¢, to ¢ = t,41, applying the steepest descent method to the
energy functional E(¢) in (2.46) without the constraint (2.45), and then projecting
the solution back to the unit sphere S at the end of each time interval [t,,t,41] to
ensure the constraint (2.45), we obtain the following gradient flow for ¢ := ¢(x,t)
with discrete normalization, which is truncated on  as

(3.1) Oip(x,t) = —%52—? = BA —V(x)— Be| ¢, xe€Q, t,<t<tpi1,

(3.2) o(x,t)=Uzg*p= / Ua(x —u)p(u,t)du, xeQ, t, <t<tpii,
Rd

d)(xa tr_7,+1)
(3.3)  B(x,tni1) i= P(x, 8, ) = ——"F—, xeN, n>0,
ekt
where ¢(x, 1) 1= lim, ,,+ é(x,t) and
_ |¢(X7t)|27 XeE Qa d
(3-4) plx.1) = { 0 otherwise, x R
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The initial data is given as ¢(x, 0) = ¢o(x) satisfying [po[|* = [, [¢o(x)[*dx = 1. The
boundary condition to (3.1) will be chosen as either the periodic boundary condition
or the homogeneous Dirichlet boundary condition based on the kernel function Uy
defined in (2.43) or (1.5), which will be specified clearly below. The gradient flow (3.1)
with periodic boundary condition and homogeneous Dirichlet boundary condition
will be discretized by the backward Euler Fourier and sine pseudospectral methods,
respectively [6]. The project step (3.3) will be discretized by summation [6]. The
discretization to (3.2) will be presented in details in the following subsections.

3.2. A method for computing dynamics. For computing the dynamics, we
adapt the time-splitting spectral method (TSSP), which has been widely and success-
fully used for the NLS equation with many applications [10, 11]. From ¢t = ¢, to
t = tp41, the problem (2.41) will be truncated on 2 and solved in two steps. First we
solve the free Schrodinger equation

1
(35) iaﬂ/)(x, t) = —§A¢(X, t), x € €, th <t <tpt1,

for a time step of length 7, and then we solve for x € Q and ¢, <t < t,41

(3.6) i0)(x,t) = [V(x) + Bep(x, 1) Y(x,t),  @(x,t) =Uax*p,
for the same time step with

_ W(Xa t)|23 X e Qa d
(3.7) plx.t) = { 0 otherwise, x € R%

Again, the boundary condition to (3.5) will be chosen as either periodic boundary
condition or homogeneous Dirichlet boundary condition based on the kernel function
Uy defined in (2.43) or (1.5), which will be specified clearly below. Then (3.5) is
discretized in space by Fourier or sine pseudospectral methods and then integrated
exactly in time. If the homogeneous Dirichlet boundary condition is used to (3.5),
then we choose the sine pseudospectral method to discretize it; otherwise, the Fourier
pseudospectral method is adapted if the periodic boundary condition is used to (3.5).
For more details, we refer the reader to [5, 9, 10, 11, 46] and references therein.

On the other hand, we notice that on each time interval [ty,t,11], the problem
(3.6) leaves |1)(x,t)| and hence ¢(x,t) invariant [9, 10, 11], i.e., [1)(x,t)] = | (X, tn)]
and p(x,t) = @(x,t,) for all times t, < t < tp41. Thus, for ¢ € [tn,tnt1], (3.6)
reduces to

(3'8) iaﬂﬂ(xa t) = [V(X) + ﬂ(p(x, tn)] ’(/J(X, t)? QO(X, tn) = Uqg * pn,

for x € Q and ¢, <t < t,41 with

_ |¢(Xatn)|27 Xe Qa d
(3.9) pnlX) = { 0 otherwise, x R
Integrating the first equation in (3.8) in time gives
(3.10)  h(x,t) = h(x, t,) e WV CIFtIIE—t) - w e <t <tpyg.

In the following subsections, we will discuss in detail the approximation of ¢ in
(3.8). The approximation of ¢ in (3.2) can be done in a similar way, and thus we omit
the details for brevity.
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We note here that, in practice, we always use the second-order Strang splitting
method [47] to combine the two steps in (3.5) and (3.6). That is, from time ¢t = ¢,, to
t = tpt1, we (i) evolve (3.5) for half time step 7/2 with initial data given at ¢ = t,;
(ii) evolve (3.6) for one step 7 starting with the new data; and (iii) evolve (3.5) for
half time step 7/2 again with the newer data. For a more general discussion of the
splitting method, we refer the reader to [5, 49].

3.3. Computation of ¢(x,t,) in (3.8). Due to the convolution in (3.8), it is
natural to consider using the Fourier transform to compute ¢(x,t,). However, from
(2.43) or (1.5) and (2.45), we know that limg_,o ﬁd(g) =00 and pp(§ =0) # 0. As
noted for simulating dipolar BECs in 3D [5], there is a numerical locking phenomena,
i.e., numerical errors will be bounded below no matter how small the mesh size is,
when one uses the fast Fourier transform (FFT) to evaluate p(x,t,) in (3.8) directly
through the Fourier transform. Here we present a method to evaluate ¢(x,t,) in (3.8)

through homogenizing the mean value of p(x,t,) := |[{(x,t,)|?, which is a constant
independent of n, to zero and then using FFT to compute it.
Denote
IQ I

d
Co, x € R%,

(3.11) Gn(x) = pn(x) — & po(x) =Ga(x) +

|Q
where Cy := [, [(x,tn)]Pdx = [, [o(x)[?dx for n > 0, Ig is the characteristic
function of the domain €2, and || is the length/area/volume of Q in 1D/2D/3D,

respectively. Then it is easy to see that G, (£ = 0) = 0 and we have

I
(312) @(Xa tn) = Ud * Pp = Ud * Gn + COUd * ﬁ = P(X, tn) + COQ(X)7 X € Q,
where P(x,t,) can be evaluated via FFT and (x) can be evaluated analytically. Here
we only show how to compute them in 1D; extensions to 2D and 3D are straightforward
and we omit them here for brevity. When d = 1, we have

(3.13) Q(z) := Ul*@ /U1 |Q| /U1 (x —u)du, a<x<hb.

The above definite integral can be computed either analytically, or otherwise numeri-
cally via numerical quadrature, e.g., composite Gauss quadratures or Simpson’s rule.
To approximate P(z,t,), we make the (approximate) ansatz

J/2-1
(3.14) P(z,ty)= Y Plewm=  a<a<,
p=—J/2
where p, = 2”” forp=-2,...,42 -1, and Pf is the Fourier coefficient of P(x,t,,)

correspondmg to the frequency p. We then approxnnate the convolution in P(x,t,)
by a discrete convolution and take its discrete Fourier transform to obtain
J J

1

(315) ﬁ;{: V27Tﬁl(:up)(|¢n|2)£v p:_§77§_ ’

where (|w”| )f is the Fourier coefficient (through discrete Fourier transform) corre-
sponding to the frequency p of the function |¢(x,t,)|?> defined on the grid points
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of © and ﬁl(up) is given in (2.43) or (1.5), which can be evaluated analytically or
numerically via numerical quadratures. If ¢(x, ¢,) is approximated this way, we usu-
ally use periodic boundary conditions to (3.5) and (3.1) and discretize them by the
time-splitting Fourier pseudospectral (TSFP) method [5] and backward Euler Fourier
pseudospectral (BEFP) method [5, 6], respectively.

3.4. Another way to compute p(x,t,) in 2D SDM. For 2D SDM, the
function ¢(x,t,) in (3.8) also satisfies the square-root Poisson equation in (2.17)
which can be truncated on the computational domain 2 with homogeneous Dirichlet
boundary conditions as

(3.16) (V) 2ok tn) = ()P, x€Q p(x,ta)lon = 0.

Based on this differential formulation, another way to compute p(x,t,,) is to discretize
the above problem by using a sine pseudospectral method in which the 0-mode is
avoided in numerical discretization.
Denote the index set Ty = {(p,q) |1 <p<J—1,1<¢g< K — 1} and assume
J-1K-1
(B17)  plota) = 3 3 By sin(ub(e —a)sin(Rly ), x €N,
p=1 g=1
where o, is the sine transform of p(x,t,) at frequency (p,q) and

p qm
(3.18) Mp=g = M= () €Tk

Substituting (3.17) into (3.16) and taking sine transform on both sides, we obtain

—

(19" )5
[(1p)? + (13)?]

where (|¢)"]?)5, is the sine transform coefficient (through discrete sine transform) cor-
responding to the frequency (p, q) of the function |)(x, t,)|?* defined on the grid points
of Q. If p(x,t,) is approximated in this way, we usually use homogeneous Dirichlet
boundary condition to (3.5) and (3.1) and discretize them by the time-splitting sine
pseudospectral (TSSP) method [5] and backward Euler sine pseudospectral (BESP)
method [9, 10, 11, 12], respectively.

Remark 3.1. For general confining potentials V, in (1.6) and V| in (1.7) other
than harmonic potential, one might not find explicit solutions of the first eigenfunction
to the eigenvalue problems (2.6) and (2.27). In this situation, one can solve the
eigenvalue problems numerically and obtain numerically the first eigenfunctions xo(2)
and (p(%1) to (2.6) and (2.27), respectively. Then the remaining dimension reduction
and numerical methods can be carried out similarly.

(3.19) 25, =

1/2° (paq)ET]Ka

4. Numerical results. In this section, we report numerical results on conver-
gence rates of the dimension reduction from 3D SPS to 2D SAM and SDM and 1D
LAM; comparison between different models such as SPS, SAM, and SDM in 2D and
SPS and LAM in 1D; and ground states and dynamics of 2D SAM and SDM and 1D
LAM under different parameters by using the efficient and accurate numerical methods
presented in the previous section. Denote by ¢4 := ¢4(x,y, 2) and ¢ := ¥(x,y, z,t) the
ground state and the solution of the dynamics at time ¢, respectively, of the 3D SPS
(1.1)—(1.2), which are computed numerically on a computational domain Q = [—8, 8].
In all computations, the time step is taken as 7 = 0.01 for computing ground states
and 7 = 0.0001 for computing dynamics.
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TABLE 4.1
Convergence from 3D SPS to 2D SAM on ground states in terms of ||¢pg — ¢g XO( 2)||;2 in
section 4.1, while cubic convergence was obtained analytically in [39].

5 1 1/2 1/4 1/8 1/16 1/32

K= 5 1.81E-02 3.80E-03 8.16E-04 8.81E-05 1.21E-05 1.64E-06

rate — 2.25 2.22 3.21 2.86 2.88

K= -5 2.01E-02 4.24E-03 9.98E-04 1.11E-04 1.57E-05 2.17E-06

rate — 2.25 2.09 3.17 2.82 2.86
TABLE 4.2

Convergence from 3D SPS to 2D SAM on ground states in terms of ||x(P) —x§||,2 in section 4.1,
while cubic convergence was obtained analytically in [39].

€ 1 1/2 1/4 1/8 1/16 1/32

K= 5 1.79E-02 3.53E-03 5.71E-04 7.85E-05 1.06E-05 1.35E-06

rate — 2.34 2.63 2.86 2.89 2.97

K= —5 1.99E-02 3.94E-03 6.78E-04 9.88E-05 1.37E-05 1.81E-06

rate — 2.34 2.54 2.78 2.85 2.92
TABLE 4.3

Convergence from 3D SPS to 2D SDM (top) and SPS (bottom) on ground states in terms of
H(bgp) (2)||12 in section 4.1.

e 1/2 1/4 1/8 1/16 1/32
"= 2.39E-02 1.45E-02 7.85E-03 1.23E-03 2.25E-03
rate — 0.72 0.89 0.89 0.91
k=—5 2.76E-02 1.75E-02 1.05E-02 5.74E-03 3.06E-03
rate — 0.66 0.74 0.87 0.91
K= 6.49E-02 5.57E-02 4.91E-02 4.56E-02 4.37E-02
k=5 5.86E-02 4.85E-02 4.16E-02 3.70E-02 3.43E-02

4.1. Convergence rates from 3D SPS to 2D SAM and SDM. In order to
do so, we take the external potential in (1.6) for the 3D SPS (1.1)-(1.2) as

1 1 2
VO=F a5 @), Vewa =g (@R S).
Let (béQ) = §2) (xz,y) be the ground state of the 2D SAM or SDM and let
Y9 1= 1a(z,y,t) be the solution of the dynamics of the 2D SAM or SDM with initial

z? 742 . . . .
data o(z,y) = e~ +~ in (2.44) at time ¢, which are computed numerically on a
computational domain Q = [—16, 16]? with mesh sizes h, = h, = 1/16. Based on this,

2212 L2
the initial data g in (2.1) for 3D SPS is chosen as g (z,y,2) = ﬁe‘ T3

and the 3D SPS is solved with mesh sizes h, = h, = % and h, = ﬁ. Define

1/2
0 (2,9) = [Jp6o(x vz Pdz] 2, p® (1) = [ [(z,y, 2. 8)2dz, and xP)(2) =
[Ja |¢>g x,Y, 2 )|2da:dy] ’? as the projections of ¢4 and p over the (z,y)-plane and
¢4 over the z-axis, respectively. Similarly, define p(p) fR |Y(z,y, 2, t)]?dz and

pa(,t) = [iha(z,y, 1)
Tables 4.1 and 4.2 list errors of ||¢g — g Xo( Y2 and ||x® — x5 |2, respectively,

which demonstrates convergence rates from 3D SPS to 2D SAM in terms of ground
states with x = £5 for different ¢, and Table 4.3 shows errors of ||¢f7p) — ¢§2)||lz,
which demonstrates convergence rates from 3D SPS to 2D SDM and SPS in terms

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/30/14 to 131.130.30.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2114 W. BAO, H. JIAN, N. J. MAUSER, AND Y. ZHANG

TABLE 4.4
Convergence from 3D SPS to 2D SAM on dynamics in terms of |[p®) — po||;1 att = 1 in
section 4.1.

5 1 1/2 1/4 1/8

K= 5 1.34E-02 5.67TE-03 6.91E-04 8.92E-05

rate — 1.48 3.07 2.98

K= -5 2.07E-02 8.19E-03 1.44E-03 1.39E-04

rate — 1.38 2.37 3.25
TABLE 4.5

Convergence from 3D SPS to 2D SDM (top) and SPS (bottom) on dynamics in terms of
1p®) — pall;1 at t =1 in section 4.1.

€ 1/4 1/8 1/16 1/32
k=5 2.63E-01 1.45E-01 7.60E-02 3.90E-02
rate — 0.86 0.93 0.96

K= —5 5.30E-01 3.17E-01 1.77E-01 9.36E-02
rate — 0.74 0.85 0.91
k=5 7.12E-2 5.72E-2 1.21E-1 1.58E-1
K= -5 1.16 9.48E-1 8.07E-1 7.24E-1

of ground states with k = £5 for different e. In addition, Tables 4.4 and 4.5 list
errors of ||p®) — py||pn for t = 1, which demonstrates convergence rates from 3D SPS
to 2D SAM and SDM and SPS, respectively, in terms of dynamics with x = £5 for
different e.

From Tables 4.1-4.5 and additional results not shown here for brevity, we can
draw the following conclusions: Under harmonic confinement strongly confined in the
z-direction, the 3D SPS converges to 2D SAM and SDM cubically (cf. Tables 4.1,
4.2, and 4.4) and linearly (cf. Tables 4.3 and 4.5 (top)), respectively, in terms of €
on both ground states and dynamics, which agree with the analytical results in [39]
when ¢ — 0. However, the 3D SPS doesn’t converge to 2D SPS when ¢ — 0 (cf.
Tables 4.3 and 4.5 (bottom)). Based on these observations, if one wants to consider
the dynamics of electrons trapped in the plane through confinement, either 2D SDM
or SAM is the correct model to be adapted, and the 2D SPS might not be a good
physical model in this situation.

4.2. Convergence rates from 3D SPS to 1D LAM. In order to do so, we
take the external potential in (1.7) for the 3D SPS (1.1)-(1.2) as

1 z? + y?
Vl(z) =5 VJ_(xay) = ($2 +y2) ’ V(x,y,z) = 5 <22 + E4y ) :

N =

Let (bél) = 5(71)(2) be the ground state of the 1D LAM and let ¢ := ¢1(z,t) be
2

the solution of the dynamics of the 1D LAM with initial data 1o(z) = e~ % in (2.44)
at time ¢, which are computed numerically on a computational domain 2 = [—16, 16]
with mesh size h, = 1/16. Based on this, the initial data 1o in (2.1) for 3D SPS is

22442 2
chosen as o(z,y, z) = ﬁe_ 27" ¢~% and the 3D SPS is solved with mesh sizes

as hy = hy = o and h, = %. Define p®(2,t) = [0, [¢(z,y,2,t)|*dady to be the
projection of p over the z-axis and let py(-,t) = |01 (z,1)|?.

Tables 4.6 and 4.7 list errors of ||¢, — ¢35 ¢S (2, y)|i2 and [|[p® — py ||y at t = 1,
which demonstrates convergence rates from 3D SPS to 1D LAM in terms of ground
states and dynamics, respectively, with £ = 45 for different e.
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TABLE 4.6
Convergence from 3D SPS to 1D LAM on ground states in terms of ||¢g — (b;l)gg(x,y)ﬂlz in
section 4.2.

€ 1/V5 1/4/10 1/4/20 1/4/40

K= 5 6.66E-03 3.49E-03 1.79E-03 8.97E-04

rate — 1.86 1.93 1.99

K= —5 7.36E-03 4.04E-03 2.19E-03 1.18E-03

rate — 1.73 1.77 1.78
TABLE 4.7

Convergence from 3D SPS to 1D LAM on dynamics in terms of ||p® — pi|lx at t = 1 in
section 4.2.

e 1/v/10 1/v/20 1/v/30 1/v/10 1/v/50
K= 5 1.02E-03 5.84E-04 4.11E-04 3.27E-04 2.71E-04
rate — 1.61 1.73 1.59 1.68
K= —5 1.65E-03 1.08E-03 8.29E-04 6.84E-04 5.83E-04
rate — 1.22 1.30 1.34 1.43
TABLE 4.8

Convergence from 2D SAM to SDM on ground states in terms of ||¢g — (bgz) [l;2 in section 4.3.
c 1 1/2 1/4 1/8 1/16 1/32
B =5 3.37E-02 2.28E-02 1.38E-02 7.66E-03 4.01E-03 2.01E-03
rate — 0.56 0.73 0.85 0.93 1.00
B =-5 4.01E-02 2.85E-02 1.80E-02 1.04E-02 5.68E-03 2.95E-03
rate — 0.50 0.66 0.79 0.88 0.95

From Tables 4.6 and 4.7 and additional relevant results not shown here for brevity,
we can draw the following conclusions: Under harmonic confinement strongly confined
in the (x, y)-plane, the 3D SPS converges to 1D LAM quadratically (cf. Table 4.6) in
terms of € on both ground states and dynamics. Rigorous mathematical justification
for these observations is ongoing.

4.3. Comparison between 2D SAM, SDM, and SPS. In order to do so,
we take d = 2 in (2.41) for the 2D SAM, SDM, and SPS with the potential chosen as
Vz,y) = % (x2 + yg), and choose the initial data in (2.44) for computing dynamics
as do(z,y) = e~

Denote now ¢, 1= ¢q(z,y) and ¢ = 9(z,y,t) to be the ground state and the
solution of the dynamics at time ¢, respectively, of the 2D SAM, which are computed

numerically on a computational domain € = [—16, 16]* with mesh sizes h, = hy = ;.
Similarly, let (béQ) = 52) (z,y) and g := o(z,y,t) be the ground state and the

solution of the dynamics at time ¢ = 1 of the 2D SDM or SPS, which again are
computed numerically on the same domain with the same mesh sizes and time step
as well as the same initial data for dynamics as for 2D SAM.

Tables 4.8 and 4.9 list errors of ||¢g — ¢§2)||lz and ||[1|? — [1b2]?||n at t = 1, which
demonstrate convergence rates from 2D SAM to SDM in terms of ground states and
dynamics, respectively, with 8 = +5 for different . In addition, Figure 4.1 plots
the right half profile of the ground state ¢4(x,0) (due to symmetric property) of 2D
SDM and SPS for different 3, and Figure 4.2 compares the ground state ¢4(x,0) and
¢4(0,y) of 2D SDM and SPS with 8 = 50 and potential V = (22 + 4y?).

From Tables 4.8 and 4.9 and Figures 4.1 and 4.2 as well as additional results
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TABLE 4.9
Convergence from 2D SAM to SDM on dynamics in terms of |||[¢|? — |2)?|lp at t = 1 in
section 4.3.

e 1 1/2 1/4 1/8 1/16 1/32
B=5 5.50E-01 3.67E-01 2.19E-01 1.21E-01 6.35E-02 3.25E-02
rate — 0.58 0.75 0.86 0.92 0.97
B=-5 8.74E-01 6.36E-01 4.12E-01 2.42E-01 1.33E-01 6.99E-02
rate — 0.46 0.63 0.77 0.87 0.93
1 1
0.8 0.8
S o.6 S o.6
=3 =3
ec” ec”
0.4 0.4
0.2 0.2
o o
o 1 2 3 a 5 o 1 2 3 a 5
X X

FiG. 4.1. Plots of the ground state ¢4(x,0) of 2D SDM (left) and SPS (right) for 8 = —30,
—20, —10, —5, 5, 10, 20, 30 (with decreasing peaks) in section 4.3.

0.45 SDM
0.4
0.35
0.3

0.25

4,009

0.2

0.15

0.1

0.05

F1a. 4.2. Plots of the ground state ¢q4(x,0) (left) and ¢4(0,y) (right) of 2D SDM (solid line)
and SPS (dashed line) for B = 50 in section 4.3.

not shown here for brevity, we can draw the following conclusions: When ¢ — 0, the
2D SAM converges linearly to SDM (cf. Tables 4.8 and 4.9) on both ground states
and dynamics. Again, rigorous mathematical justification for these observations is
ongoing. In addition, the profiles of the ground states from 2D SDM and SPS under
the same potential and interaction parameter differ significantly, especially at the
center and the tail (cf. Figures 4.1 and 4.2).

4.4. Comparison between 1D LAM and SPS. In order to do so, we take
d =1 in (2.41) for the 1D LAM and SPS with the potential chosen as V(z) = %,
and choose the initial data in (2.44) for computing dynamics as 1o (z) = ﬁ e 7.

Denote now ¢4 := ¢4(x) and ¢ := 1¥(x,t) to be the ground state and the solution

of the dynamics at time ¢, respectively, of the 1D LAM or SPS, which are computed
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(0] 1 2 3 4
X

F1a. 4.3. Plots of the ground state ¢g4(x) of 1D SPS (dashed line) and LAM (solid lines) for
(left) k =5 and e = 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 (with decreasing peaks) in LAM; (right)
k=—-5ande=1/2,1/8, 1/32, and 1/128 (with increasing peaks) in LAM in section 4.4.

0.6
LAM ) LAM
— — — sPs — — — sPs
=
=
4 5 2 3

Fi1G. 4.4. Plots of the density p(xz,t = 1) of the dynamics of 1D SPS (dashed line) and LAM
(solid lines) for (left) k =5 and e = 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 (with decreasing peaks)
in LAM; (right) Kk = —5 and ¢ = 1/2, 1/8, 1/32, and 1/128 (with increasing peaks) in LAM in
section 4.4.

numerically on a computational domain = [—16, 16] with mesh size h, = %, and

define the density p(z,t) := |¢(z,t)|?. Figures 4.3 and 4.4 show the ground state
¢g(x) and the density p(z,t) at ¢ = 1 of the dynamics, respectively, of 1D SPS and
1D LAM with different e.

From Figures 4.3 and 4.4 as well as additional results not shown here for brevity,
we can draw the following conclusions: The profiles of the ground states and dynamics
from 1D SPS and LAM under the same potential and interaction parameter differ
significantly, especially at the center and the tail (cf. Figures 4.3 and 4.4).

4.5. Ground states and dynamics of electrons in 2D via SDM. Here we
present some numerical results on the ground states and dynamics of electrons in
2D with application to graphene through the 2D SDM (2.16)—(2.17), which is much
cheaper than solving the 3D SPS.

For computing the ground states, we take harmonic and harmonic 4+ honeycomb
[24] potentials defined as

(4.1) V(z,y) = 5(2® + 497,

(2® +y?) + Vo [cos(by - x) + cos(bz - x) + cos((b1+b2) - x)],

N =N =

(4.2) V(z,y) =
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TABLE 4.10
Different quantities of the ground state in 2D SDM with harmonic potential (4.1) for different
B in section 4.5.

B B9 Efzm Epgot Elgnt Ug U?g Pg (O)
—50 —2.989 3.554 0.181 —6.723 0.075 0.071 1.619
—10 0.874 0.942 0.604 —0.672 0.353 0.214 0.784

-5 1.198 0.834 0.676 —0.312 0.423 0.233 0.723

5 1.783 0.684 0.824 0.274 0.582 0.266 0.627
10 2.050 0.634 0.896 0.520 0.668 0.281 0.589
50 3.830 0.442 1.432 1.956 1.356 0.377 0.424

=

6
0.3
0.25
2
0.2
= 0
0.15
-2
0.1
-+ 0.05
-6 o
6
| .. 1 l
-6

Fic. 4.5. Contour plots of the ground states of 2D SDM with harmonic + honeycomb potential
(4.2) for different Vi in section 4.5.

||><o

s

n

~N

iR

with by = %(\/ﬁ, 1), by = %(—\/3, 1), and Vj a tunable constant, respectively. Let

¢g = ¢g(x,y) be the ground state, which is computed on a computational domain
Q = [-16,16]* with mesh size h, = hy = . Define the energy Eg E(¢g), kinetic
energy EY, =% [oo |V (x)|? dx, potential energy EY, := [o.V( |¢)g (x)|? dx, in-

teraction energy B =2 [oa(Uax|0g|?) |0y (x)|2dx; variances o := [, 2%|¢,(x)|? dx
and 0§ := [poy 2|¢4(x)|* dx in the 2- and y-direction, respectively; and density at the
origin p,(0) := |¢,4(0,0)|?. Table 4.10 lists these quantities of the 2D SDM with har-
monic potential (4.1) for different 5. In addition, Figure 4.5 depicts the ground states
of 2D SDM with 8 =5 and harmonic + honeycomb potential (4.2) for different V5.
From Table 4.10 and Figure 4.5 as well as additional results not shown here
for brevity, for the ground states of the 2D SDM under harmonic potential (4.1),
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=021

Fi1G. 4.6. Time evolution of the density p of the 2D SDM with the optical lattice potential (4.3)
in section 4.5.

when [ increases, the energy, kinetic energy, potential energy, interaction energy, and
variances in the z- and y-directions increase, while the density at the origin decreases
(cf. Table 4.10). When Vp becomes larger, the electrons concentrate at the Dirac
points of the honeycomb potential (4.2) (cf. Figure 4.5).

For computing the dynamics, we take the initial data in (2.44) as g(z,y) =
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t=10.26

t=0.77 t=1.05

=135

Fic. 4.7. Time evolution of the density p of the 2D SDM with the honeycomb potential (4.4)
in section 4.5.

e~ @ +¥")/2 and consider optical lattice and honeycomb [24] potentials defined as
(4.3) V(z,y) =10 [sin(rz)* + sin(my)?] ,
(4.4) V(z,y) = 10][cos(by - x) + cos(bz - x) + cos((b1+bz2) - x)],

respectively. Let ¢ := ¢(x,y,t) be the solution of the 2D SAM which is computed

numerically on a computational domain 2 = [—16, 16]> with mesh sizes h, = h, = %6,
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and denote the density as p := p(x,y,t) = |[(z,y,t)|?. Figures 4.6 and 4.7 show
time evolution of the density p of 2D SDM with the optical lattice and honeycomb
potentials (4.3) and (4.4), respectively.

From Figures 4.6 and 4.7 and additional results not shown here for brevity, we
can see that the 2D SDM describes correct and very interesting dynamics of electrons
confined in 2D.

5. Conclusions. We presented how to correctly perform a spatial dimension
reduction from the three-dimensional (3D) Schrédinger equation with Coulomb in-
teraction, i.e., the Schrodinger—Poisson system (SPS), under an anisotropic external
potential to two dimensions (2D) and one dimension (1D) under strong confinement
in the z-direction and (z,y)-plane, respectively. In 2D, we obtained the 2D surface
adiabatic model (SAM) and surface density model (SDM), and, respectively, in 1D,
we got the line adiabatic model (LAM). Efficient and accurate numerical methods
were presented for computing the ground states and dynamics of the 2D SAM and
SDM and 1D LAM as well as 2D SPS by focusing on how to evaluate the effective
interaction potential efficiently and accurately. Convergence rates were studied and
observed numerically in terms of the ground states and dynamics from 3D SPS to
2D SAM and SDM and 1D LAM as well as from 2D SAM to SDM, which confirmed
those partial rigorous mathematical results in the literature [17, 18, 19]. Our nu-
merical results provided completed results for all cases. Finally we applied the 2D
SDM for studying numerically the ground states and dynamics of electrons confined
in the plane under harmonic, optical lattice, and honeycomb potentials. Our results
demonstrated that the 2D SDM or SAM describes the correct physics of the ground
states and dynamics of electrons confined in 2D, while the 2D SPS might not be a
good model in this situation.
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