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Magnetostrictive amorphous ribbons are widely used in electronic article surveillance as well as

for magnetoelastic sensors. Both applications utilize the fact that the ribbons’ resonant frequency

can be read out remotely by applying external magnetic AC fields. This paper proposes a

magnetomechanical model to simulate the dynamics of such ribbons. The goal was to only use

general material properties as input parameters, which are usually denoted in the data sheet of

amorphous metals. Thus, only the magnetization curve at zero stress has to be gained via

measurement. The magnetization under stress is calculated thereof. The equation of motion for a

longitudinally oscillating ribbon is derived and coupled to Maxwell’s equations for magnetostatics.

The fully coupled initial value problem is solved simultaneously by a finite difference approach.

The model is validated by comparing calculated and measured resonant frequencies of various

amorphous ribbons, which turned out to be in good agreement. When slightly adapting single

material properties from the data sheet, the match is almost perfect. The model is then used to

calculate the local magnetic and mechanical properties inside static and vibrating ribbons. These

local distributions can be directly linked to the field dependence of the resonant frequency and its

higher harmonics. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861735]

I. INTRODUCTION

Amorphous magnetostrictive ribbons are used million-

fold in Acousto-Magnetic (AM) systems for Electronic

Article Surveillance (EAS).1 They are also applied as mag-

netoelastic resonance sensors, which have gained increasing

interest in recent years, as they provide an opportunity to

remotely monitor a large variety of quantities.2,3 Both appli-

cations utilize the fact that such a ribbon has a characteristic

frequency, which can be read out remotely by applying mag-

netic AC fields and measuring the magnetic response signal.

For most applications, this characteristic frequency is the res-

onant frequency of the ribbon’s fundamental longitudinal os-

cillation mode. This resonant frequency is given by4

fres ¼
1

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

q 1� �ð Þ

s
; (1)

where l is the length, E is Young’s modulus, � is the Poisson

ratio, and q is the mass density of the ribbon. For a magneto-

strictive material, Young’s modulus depends on its magnet-

ization, hence on its inner magnetic field (Delta-E effect).
The field-dependent Young’s modulus was described by

Livingston for a linear magnetic material law5 and more gen-

erally by Herzer6

1

EðHÞ ¼
1

Es

þ 9
k2

s l0

J2
s

v m2; (2)

where ks is the saturation magnetostriction, l0 is the vacuum

permeability, Js is the magnetic saturation polarization, v is

the differential susceptibility, and m is the normalized magnet-

ization, i.e., the ratio of polarization J and Js. H is the inner

field. Both v and m depend on the inner magnetic field, which

is inhomogeneous, in general. Therefore, the simplistic Eq.

(1) does not apply anymore for it assumes Young’s modulus

to be constant. The resonant frequency has to be calculated

numerically. In addition, the magnetic properties of a magne-

tostrictive material are also stress dependent. Thus, to predict

the dynamics of magnetostrictive ribbons, a fully coupled

magneto-mechanical and stray field problem has to be solved.

Due to their versatile utilization for sensor and actuator

applications, lots of work has been done on modeling the dy-

namics of magnetostrictive materials in recent years.

Engdahl7 solved the coupled magneto-mechanical problem

of a magnetostrictive rod based on a 1D-finite differences

method. To gain the necessary sample properties for the

model, both magnetostriction and effective stiffness have to

be measured as a function of applied magnetic field and

stress. Magnetostatic interactions are not taken into account.

Ba�nas8 used a micromagnetic approach with magneto-

striction being incorporated as an additional magnetic field

term in the Landau-Lifshitz equation. Magnetostatic interac-

tions are not taken into account here either. The inner mag-

netic field is assumed to be known. The method is suitable

for problem geometries on nanometer scale.

Per�ez-Aparaicio and Sosa9 formulated a fully coupled

three-field problem, taking account of elastic, electric, and

magnetic effects. Magnetostriction is represented via a set of

linear constants which are functions of the stiffness ata)Electronic mail: bernhard.bergmair@tuwien.ac.at

0021-8979/2014/115(2)/023905/10/$30.00 VC 2014 AIP Publishing LLC115, 023905-1

JOURNAL OF APPLIED PHYSICS 115, 023905 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:19:45

http://dx.doi.org/10.1063/1.4861735
http://dx.doi.org/10.1063/1.4861735
http://dx.doi.org/10.1063/1.4861735
mailto:bernhard.bergmair@tuwien.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4861735&domain=pdf&date_stamp=2014-01-13


constant field, piezomagnetic coupling and permeability at

constant stress. These material properties have to be charac-

terized experimentally.

Cao et al.10 modeled the dynamic hysteresis of a magne-

tostrictive actuator based on a modified Jiles-Atherton model

including eddy currents. They used12 model parameters

which are found by a hybrid genetic algorithm by comparing

the simulation results to the measured strain-field-hysteresis

of the sample. Magnetostatic interactions are not taken into

account. The inertial forces of the actuator-rod itself are

neglected. Therefore, stress is only exerted at the rod’s

moveable end, which is constrained by a spring and an end

mass.

Bottauscio et al.11 modeled the dynamic behavior of a

magnetostrictive actuator. The modeling of the magnetiza-

tion hysteresis is based on an advanced Preisach model. The

model parameters are gained from sets of static B-H-loops

measured at different stresses. A finite element field analysis

accounts for eddy currents in the magnetic materials. The

actuator-rod is constrained by a spring on one side. As iner-

tial forces are neglected again, the coupling between stress

and magnetic quantities is only caused by the spring force

increasing with the magnetostrictive elongation of the rod.

Evans and Dapino12 developed a 3-D model for magne-

tostrictive transducers containing Maxwell’s equations and

structural dynamics. The model has been derived generally

for nonlinear constitutive laws and was then implemented

for a unimorph actuator with linear constitutive laws.

Chakrabarti and Dapino13 extended the approach into the

nonlinear regime, using constitutive laws which are calcu-

lated by an energy-averaged model.14

Jin et al.15 proposed a magneto-thermo-elastic coupled

model to investigate the resonant frequency of an actuator.

The nonlinear constitutive model is derived from a Taylor

series expansion of Gibbs energy around the reference point

with zero stress, zero magnetization, and a finite tempera-

ture. The nonlinear relation magnetization to magnetic field

is modeled by the Langevin function. The magnetic and the

elastic problems are solved iteratively until a certain conver-

gence criterion is fulfilled.

In this paper, a model for describing the dynamics of a

magnetostrictive amorphous ribbon is proposed. The goal

was to predict the resonant frequency as a function of an

externally applied field by only using general material prop-

erties. Fit parameters as well as extensive characterization

measurements (like stress and field dependent magnetiza-

tion) are avoided. The model is based on Livingston’s work

on the stress dependence of the magnetic properties of amor-

phous ribbons.5 Livingston assumed an ideal magnetization

behavior, where the magnetization component parallel to the

external field linearly increases until it saturates with a sharp

edge when reaching the anisotropy field. Real materials

show a non-ideal, i.e., “rounded,” transition from linear to

saturated magnetization behavior in the vicinity of the ani-

sotropy field. In this paper, a general method to calculate the

stress induced transformation of these non-ideals, but still

almost anhysteretic, hard axis magnetization curves are sug-

gested. The one dimensional equation of motion for magne-

tostrictive materials is derived and simultaneously solved

together with Maxwell’s equations for magnetostatics based

on a finite difference approach. The stray field solution of

Maxwell’s equations also accounts for the ribbon’s three

dimensional shape. The calculated resonant frequencies at

different magnetic fields are then compared to the resonant

frequencies gained from experiments with ribbons of various

material properties and shapes. Also detailed simulation

results concerning static and dynamic local properties inside

a ribbon—such as magnetization, strain, and Young’s modu-

lus—are presented as a function of the applied bias field.

The paper is structured as follows: In Sec. II, the model

is derived. In Sec. II A, the scope of the model is described.

In Sec. II B, the governing equations from literature concern-

ing the ribbon’s longitudinal oscillation and the coupling

between mechanical and magnetic quantities are compiled.

In Sec. II C, a method for calculating the stress-dependent

magnetization from a measured magnetization curve at zero

stress is developed. To account for the influence of an exter-

nal magnetic field and for the ribbon’s own stray field, a gen-

eral solution of Maxwell’s equations of magnetostatics is

denoted in Sec. II D. The fully coupled system of equations

is derived in Sec. II E, assuming the external field to be

applied parallel to the ribbon’s long axis and using a simpli-

fying quasi-1D ansatz. In Sec. II F, these equations are dis-

cretized spatially, hence, forming a numerically solvable

differential-algebraic system of equations. In Sec. III, the

used third-party solver software is described. In Sec. IV,

the calculated resonant frequencies of various ribbons are

compared to the resonant frequencies obtained in according

experiments. In Sec. V, the model is used to simulate local

quantities and their dynamics in a vibrating magnetostrictive

ribbon. In the appendix, a formulation of the Delta-E effect

in the context of the one-dimensional equation of motion is

derived. With this formulation, the ribbon’s oscillation could

be calculated analytically under the assumption of a homoge-

neous inner magnetic field in the ribbon and small strain

amplitudes.

II. DERIVATION OF THE MODEL

A. Scope

The model describes the dynamic behavior of a magneto-

strictive amorphous ribbon, which is subject to a time-variant

external magnetic field. The external field is applied parallel

to the ribbon’s long axis (i.e., x-direction). Amorphous ribbons

used for AM-EAS and magnetoelastic sensors (MES) are

transverse or oblique annealed.6 Both annealing processes

induce a magnetocrystalline anisotropy with the easy axis

being orthogonal to the ribbon’s long axis. Figure 1 shows the

emerging domain structure. If a magnetic field is applied in

the x-direction, the magnetizations of the individual domains

rotate towards the field vector. The resulting macroscopic

net-magnetization is parallel to the x-direction, as the y- and

z-components of neighboring domains cancel each other out

(Fig. 2).

Ribbons used for EAS and MES usually have a slender

shape. To model their dynamic behavior, it is therefore suffi-

cient to create a one-dimensional finite difference grid by

partitioning the ribbon lengthwise into a finite number of

023905-2 Bergmair et al. J. Appl. Phys. 115, 023905 (2014)
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numerical elements (Fig. 3). Hence, only spatial variations in

x-direction are taken into account, whereas in the (y, z)-cross

section, all considered quantities are assumed to be constant.

B. Magnetomechanical coupling

In a magnetostrictive material, mechanical and elastic

quantities are coupled. The strain e and the magnetic polar-

ization J depend on both the mechanical (tensile) stress r
and the magnetic field H (see, for instance, Engdahl16)

e ¼ eðr;HÞ;
J ¼ Jðr;HÞ: (3)

The equation of motion in one dimension without damping

is

q
@2

@t2
uðx; tÞ ¼ @

@x
rðx; tÞ; (4)

where u(x, t) is the longitudinal displacement of an element

at the original position x, q is the mass density, and r is the

tensile stress in x-direction. In a magnetostrictive material,

the total strain is the sum of an elastic component ee and the

magnetostrictive strain em

e ¼ ee þ em: (5)

Only the elastic strain contributes to Hooke’s law

r ¼ Ese
e; (6)

where Es is Young’s modulus, which can be measured for

magnetostrictive materials under magnetic saturation. The

total strain e is given by the displacement u

eðx; tÞ ¼ @

@x
uðx; tÞ: (7)

For a ferromagnetic material, the magnetic strain of an en-

semble of grains can be calculated from the average direc-

tion of the grain magnetizations17

em ¼ 3ks

2
hcosðhÞ2i � 1

3

� �
; (8)

where h denotes the angle of the local grain magnetization

with respect to the direction in which the magnetostriction is

measured. The term � 1
3

implies that a material with ran-

domly oriented spins has zero magnetostriction. In the case

of a uniform hard-axis magnetization cosðhÞ is constant for

all grains in the ensemble. Thus, one can claim

hcosðhÞ2i ¼ hcosðhÞi2 ¼ Jx

Js

� �2

¼: m2 (9)

with the magnetic polarization in x-direction Jx, the satura-

tion polarization Js, and the normalized magnetization m.

Inserting (5), (7), (8), and (9) in (6) yields

r ¼ Es

@u

@x
� 3ks

2
m2 H; rð Þ � 1

3

� �� �
: (10)

It should be noted that this is not an explicit expression for r
as the normalized magnetization m of a magnetostrictive ma-

terial still depends on r. The inner magnetic field H is

unknown, too as it depends on the shape of the demagnetiz-

ing field produced by the ribbon. Moreover, the function

m H; rð Þ is yet to be defined.

C. Transformation of the magnetization under stress

Considering the ideal case of an anhysteretic linear ma-

terial law, which sharply saturates at the stress dependent an-

isotropy field HAr, the normalized magnetization under

stress can be calculated by5

m H; rð Þ ¼
H

HAr
; 0 < H < HAr

1; HAr � H

;

8><
>: (11)

where

FIG. 1. Schematic domain structure of an amorphous ribbon with easy axis

in y-direction.

FIG. 2. Rotational magnetization process in an external field. One numerical

element contains several domains. The net-magnetization is parallel to the

x-axis.

FIG. 3. One-dimensional grid for the finite difference method. The arrows

symbolize the net-magnetization in each element.
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HA :¼ 2Ku

Js

; (12)

rc :¼ 2Ku

3ks

; (13)

HAr :¼ 2Ku � 3ksr
Js

¼ 1� r
rc

� �
HA; (14)

with the anisotropy constant Ku, the saturation magnetostric-

tion ks, and the saturation polarization Js. Figure 4 shows the

normalized magnetization as a function of the normalized

magnetic field at different tensile and compressive stresses.

To better express the stress dependencies in (11), a field Ht

which is scaled by a stress dependent factor can be defined

Ht :¼ 1� r
rc

� ��1

H: (15)

Substituting HAr and H by (14) and (15) in (11) yields

m H; rð Þ ¼
Ht

HA

; 0 < Ht < HA

1; HA � Ht

:

8><
>: (16)

This is equivalent to a magnetization curve with the zero
stress anisotropy field HA evaluated at a field Ht. Thus, the

whole stress-dependence of the ideal magnetization function

can be reduced to the following stress-transformation:

m H; rð Þ ¼ m Ht; 0ð Þ ¼: m0 Htð Þ; (17)

where m0(H) is the magnetization curve at zero stress.

Hence, magnetization curves at finite stresses r < rc can be

calculated there from by just scaling the H-axis. It should be

noted that this stress-transformation depends on the anisot-

ropy constant, hence on the anisotropy field.

Amorphous specially annealed materials show a close-to-

ideal hard-axis magnetization curve (Fig. 5). The observed

rounded shape can be explained by an underlying anisotropy

field distribution18 in contrary to the singular anisotropy field of

a sharply edged ideal magnetization curve. Thus, the stress-

transformation above cannot be generally applied in a straight

forward manner, as a unique anisotropy field does not exist.

First, the observed rounded magnetization curve at zero stress

has to be decomposed into its components. Each of these com-

ponents is represented by a sharply edged magnetization curve

with a unique anisotropy energy. Second, every component has

to be stress-transformed on its own, using this particular anisot-

ropy energy. Third, the transformed sharply edged magnetization

curves can be recomposed to obtain the real (rounded) magnet-

ization curve under stress. Yet, for narrow anisotropy distribu-

tions, the stress-transformation can be applied straight forward to

the observed magnetization curve by using an effective anisot-

ropy constant Ku,eff instead of taking the whole distribution into

account. This paper is based on the latter approach. Moreover,

the measured magnetization curve under zero stress m0(H) is

simplified as anhysteretic spline-function. This zero stress spline

function is then taken as input for the simulation from which all

values under stress mðH; rÞ are calculated using (17).

D. Magnetostatic problem

The inner magnetic field H is the sum of the applied exter-

nal field Hext and the stray field HS of the magnetized ribbon

H ¼ Hext þHS: (18)

Eddy currents are neglected, as amorphous metals have a rel-

ative high electrical resistivity and the resonant frequencies

of the used ribbons are in the kHz-regime. At these frequen-

cies, also the magnetization dynamics of the current rota-

tional magnetization processes can be neglected. Maxwell’s

equations therefore read

r � B ¼ 0; (19)

r�H ¼ 0; (20)

FIG. 4. Ideal magnetization curves at different stresses of a material with

positive magnetostriction. Stress, magnetic field, and magnetization are par-

allel. The influence of the stress is equivalent to a scaling of the magnetic

field axis.

FIG. 5. Hard-axis magnetization of the amorphous metal VITROVAC

7600 F for two different anisotropy fields.

023905-4 Bergmair et al. J. Appl. Phys. 115, 023905 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.130.30.233 On: Wed, 30 Jul 2014 12:19:45



where

B ¼ l0H þ J: (21)

The solution is19

H ¼ Hext �
1

4p
r

ð
V

qmðr0Þ
jr � r0jdV0 þ

þ
@V

rmðr0Þ
jr � r0jdS0

0
@

1
A (22)

with the magnetic volume charge density

qm ¼ �r � J=l0 (23)

and the magnetic surface charge density

rm ¼ n � J=l0; (24)

where V denotes the volume of the ribbon and n denotes the

surface normal at the boundary of V. Hence, (22) depends on

the magnetic polarization J and on the normalized magnet-

ization m, respectively. Equations (4), (10), and (22) have to

be solved simultaneously.

E. Fully coupled problem

For the derivation of the numerical model, the afore-

mentioned assumptions are taken into account in this section:

i.e., all quantities are assumed to be constant in the (y, z)-

cross sections. The external field is applied parallel to the x-

axis. Thus, the macroscopic magnetization is also parallel to

the x-direction. With these assumptions, it is not possible to

satisfy both Maxwell’s equations and the material law at ev-

ery point of the ribbon. It is therefore only demanded that

they are fulfilled on the ribbon’s long axis (y¼ z¼ 0). This

yields a quasi-one-dimensional model. It should be pointed

out that (inside the framework of the above mentioned

assumptions), the stray field is nonetheless calculated on a

three-dimensional basis.

For symmetry reasons, only the x-component of the

magnetic field vector is nonzero on the ribbon’s long axis.

With

Hext :¼ Hextêx; (25a)

) Hðx; y ¼ 0; z ¼ 0Þ ¼ HðxÞêx; (25b)

where êx is the unit vector in x-direction, the x-component of

the vector Eq. (22) along the ribbon’s long axis reads

HðxÞ ¼ Hext �
1

4p
@

@x

ð
V

qmðr0Þ
jxêx � r0j dV0þ

þ
@V

rmðr0Þ
jxêx � r0j dS0

0
@

1
A;

(26a)

¼ Hext �
1

4pl0

ð
V

@Jxðr0Þ
@x0

ðx� x0Þ

ðx� x0Þ2 þ y02 þ z02
h i3

2

dV0

þ 1

4pl0

þ
@V

nðr0Þ � êxJxðr0Þ
ðx� x0Þ

ðx� x0Þ2 þ y02 þ z02
h i3

2

dS0:

(26b)

For the subsequent numerical treatment, it is helpful to

substitute the second time derivative of u in (4) by introduc-

ing the velocity v

vðx; tÞ :¼ @

@t
uðx; tÞ: (27)

And last, the ribbon’s cuboid-shape of the size l� b� h in x-,

y-, and z-directions is considered. The total system of equa-

tions then reads

0 ¼ @

@t
u� v; (28a)

0 ¼ q
@

@t
v� @

@x
r; (28b)

0 ¼ r
ksEs

� 1

ks

@u

@x
þ 3

2
m ðH; rÞ2 � 1

2
; (28c)

0 ¼ H � Hext þ
Js

4pl0

ð
x0

@ m ðHx0 ; rx0 Þ
@x0

Cx�x0dx0

� Js

4pl0

X
x0¼6 l

2

sgnðx0Þmx0 ðH; rÞCx�x0 ;

(28d)

where the spatial dependence of the quantities in the x0-inte-

gral is clarified by superscripts. For the integrals over the

cross section, the abbreviation

Cx�x0 ¼
ðb2

y0¼�b
2

ðh2
z0¼�h

2

x� x0

ðx� x0Þ2 þ y02 þ z02
h i3

2

dy0dz0 (29)

has been used. They can be calculated analytically with a

rather long expression (see Akoun and Yonnet,20 Appendix

1 or Engel-Herbert and Hesjedal21). The unknown quanti-

ties in this system of equations are u; v; r, and H. All of

them are functions of the position along the x-axis and

time.

F. Spatial discretization

To solve this problem numerically, the geometry has

to be spatially discretized in the x-dimension. Due to the

cuboidal shape of the ribbon, a finite difference approach

was chosen. Hence, the ribbon is partitioned into a chain of

n homogeneous cuboids (i.e., numerical elements, see

Fig. 3). Each of them has the length q. The advantage of

the finite difference approach is that the stray field of the

resulting cuboidal numerical elements can be calculated by

employing the analytical expression for Eq. (29). As a con-

sequence of the emerging difference quotients, the quanti-

ties u, v, h, and @r=@x are defined at the n centers of the

elements, denoted by integer superscripts. Whereas the

quantities r and @u=@x are defined at the n–1 interfaces

between the elements and at the borders at x ¼ 6 l
2
,

denoted by the half-integer superscripts. The partial deriv-

atives are replaced by the corresponding finite difference

quotients
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@r
@x

� �i

! riþ1
2 � ri�1

2

q
; (30a)

@u

@x

� �iþ1
2

! uiþ1 � ui

q
: (30b)

As the single cuboids have a homogenous magnetization, the

integral over x0 in (28d) vanishes. Instead the term for the

surface charges has to take into account the surfaces of all

the cuboids. Hence, an additional sum appears. It should be

noted that the additional sum also includes the case i¼ j,
hence taking into account the demagnetizing field of the re-

spective numerical element itself. For every numerical ele-

ment i 2 f1; 2; :::; ng, the discretized form of the system of

Eq. (28) has to be fulfilled

0 ¼ _ui � vi; (31a)

0 ¼ q _vi � riþ1
2 � ri�1

2

q
; (31b)

0 ¼ riþ1
2

ksEs

� 1

ks

uiþ1 � ui

q

þ 3

2
m

Hi þ Hiþ1

2
; riþ1

2

� �2

� 1

2
; (31c)

0 ¼ Hi � Hi
ext �

Js

4pl0

�
Xn

j¼1

X
Dj¼61

2

sgnðDjÞm Hj;
rj�1

2 þ rjþ1
2

2

� �
Cxi�xjþDj

: (31d)

The unknown quantities in this system of equations are

ui; vi; riþ1
2 and Hi for all n or nþ 1 values of the index i.

They can be wrapped up to a single vector with 4n
dimensions

yðtÞ ¼

uðtÞ
vðtÞ
rðtÞ
HðtÞ

0
BB@

1
CCA: (32)

This vector of unknowns is now only a function of time. The

set of Eq. (31) is a differential-algebraic equation (DAE) sys-

tem. It can be expressed as a vector function, which also has

4n dimensions

0 ¼ F t; yðtÞ; _yðtÞð Þ; (33)

where the explicit time dependence can, for example, be

caused by a time varying external magnetic field.

III. SOFTWARE

The initial value problem for (33) was solved with

Sundials IDA package.22 Starting, for instance, from trivial ini-

tial conditions, IDA conducts the time evolution. Therefore,

the time is discretized into a succession of variable time steps

hm. For each discrete time step m, IDA uses Backward

Differentiation Formulas (BDFs) to substitute the unknown

time derivatives _ym by a linear function of known ym�k from

former time steps and the unknown ym from the present time

step

_ym ¼
1

hm

Xp

k¼0

ðakÞm ym�k: (34)

The order p and the coefficients ak are variably managed by

IDA itself. IDA also chooses the time step hm by using a set

of local error estimates. Hence, the differential-algebraic sys-

tem (33) is replaced by a nonlinear algebraic system

0 ¼ Gm tm; ymð Þ; (35)

which is solved at every time step by a Newton iteration. For

each step of the Newton iteration, a linear system of equations

needs to be solved, which is done by means of a matrix-free

Generalized Minimal Residual (GEMRES) Krylov method.

Arising Jacobian vector products are replaced by finite differ-

ence approximations.

IV. MODEL VERIFICATION

To validate the derived model, the free longitudinal

vibration of various magnetostrictive ribbons have been both

measured and simulated. The fundamental resonant fre-

quency has then been determined as a function of the applied

homogeneous external magnetic bias field. In both cases, the

vibration has been induced by applying an additional time-

dependent magnetic field (excitation field). After turning off

the excitation field, the ribbon vibrates freely at its resonant

frequency. The resonant frequency has been determined by

conducting a Fast Fourier Transform (FFT) of the measured

or simulated time series of the ribbon’s magnetization.

The ribbons have been made of the amorphous metal

VITROVAC [Ref. 23] 7600 F with (HA,eff¼ 260 A/m) and

(HA,eff¼ 380 A/m) from Vacuumschmelze. The ribbons have

been cut into lengths of 30, 35, and 40 mm. For the simula-

tion, a ribbon has been mathematically divided into 80 nu-

merical elements in the framework of the finite difference

algorithm. Table I lists all of the sample properties, which

are used as model input. Most of the parameters are taken

from the material data sheet. The spline function for the

magnetization curve at zero stress is derived from Fig. 5 and

applies to both materials

m0 Hð Þ ¼

H

HA

; 0 � H < 0:8 HA;

cubic

polynomial
; 0:8 HA � H � 1:25 HA;

1; 1:25 HA � H:

8>>>>>><
>>>>>>:

(36)

The only fit-parameter is Young’s modulus. It was adapted in

order to make the simulated resonant frequency at Hext¼ 0

matches the measured frequency. This fitted Young’s modulus

already includes Poisson’s ratio. The Poisson ratio takes into
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account that the longitudinal oscillation yields transverse

deformations at the same time.4

Figure 6 shows the used experiment setup. The magne-

tostrictive ribbon was placed on a plane surface in the center

of the coils. A homogeneous constant bias field in parallel to

the x-axis was generated by the bias coil. The strength of the

generated bias field per coil current was measured in the cen-

ter of the coil using the gauss meter Bell 610. The excitation

coil produced an exponentially decaying sinusoidal field in

the same direction. After turning off this excitation field, the

ribbon continued to vibrate longitudinally for about one

millisecond in its self oscillation modes. The pickup coil

catched the ribbon’s stray field, which was produced by its

oscillating magnetization. A fast Fourier transform was then

performed on the signal. The resonant frequency was defined

as the position of the spectral peak maximum. Both control-

ling the experimental setup and analyzing the signal was

done by a emphNational Instrument LabView program.

The results are plotted in Fig. 7. With the denoted pa-

rameters, the simulated resonant frequencies are in good

agreement with the measured ones. However, they match

better for long hard magnetic ribbons than for short soft mag-

netic ribbons. The intrinsic approximations of the presented

model are a possible reason. The quasi-one-dimensional na-

ture of the model is better suited for long ribbons. For shorter

ribbons, the assumption of uniform quantities throughout the

cross section becomes inapplicable at some point. Another

possible explanation for the discrepancies between experi-

ment and simulation are imprecisions of the used material

parameters. The latter reason is likely to have some influen-

ces anyway, as the material parameters denoted in the data

sheet are only mean values of the whole batch.

All of them can differ from the actual properties of the

used samples. When, for instance, a saturation magnetization

Js lowered by 8% is used for the simulation, the result almost

exactly matches the measured frequencies (see Fig. 8).

Increasing the saturation magnetostriction ks by 12% leads

to very similar improvements (not plotted). The lack of ex-

perimental data in the vicinity of the frequency minima is

due to the very weak signal strength at these bias fields.

V. SIMULATION RESULTS

With the presented model, it is possible to gain insights

into the physical phenomena that are responsible for the res-

onant frequency behavior as a function of bias field. This

section shows the spatial distributions of some fundamental

TABLE I. Model input parameter.

Parameter Symbol Magnitude Source

Anisotropy field (effective) HA,eff 260 or 380 A/m data sheet

Saturation polarization Js 1.74 T data sheet

Saturation magnetostriction ks 42 ppm data sheet

Mass density q 7480 kg/m3 data sheet

Normalized hard

axis magnetization

mðH; r ¼ 0Þ cubic spline data sheet

Young’s modulus Es 159.76 GPa fitted

Ribbon length l 30, 35, or 40 mm measured

Ribbon width b 12.3 mm measured

Ribbon thickness h 22 lm calculated

FIG. 6. Experimental setup.

FIG. 7. Comparison of measured (symbols) and simulated (dashed lines)

resonant frequencies of various amorphous ribbons. For the simulation, the

parameters from Table I have been used.

FIG. 8. Comparison of measured (symbols) and simulated (dashed lines)

resonant frequencies of various amorphous ribbons. For the simulation, the

parameters from Table I have been used, with the exception of Js, which

was fitted from the original 1.74 T to 1.60 T.
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quantities of the coupled magnetoelastic system of a magne-

tostrictive ribbon and their dynamics during the ribbon’s

oscillation.

These quantities are the governing response functions,

which can be deduced from Eq. (3): the material laws with a

field dependent Young’s modulus EH and the strain depend-

ent differential susceptibility vr

@e
@r

����
H

¼:
1

EHðr;HÞ
;

@J

@H

����
r

¼: l0 vrðr;HÞ;
(37)

and the magnetomechanical coupling coefficient d derived

from Maxwell’s rule

@e
@H

����
r

� @J

@r

����
H

¼: dðr;HÞ: (38)

The latter, for instance, describes how easily a mechanical

oscillation of the ribbon can be caused by magnetic AC fields

and, vice versa, also describes the amplitude of the oscillat-

ing magnetic moment caused by such a mechanical oscilla-

tion. All these quantities are scalars representing the

components along the x-axis.

A. Numerical experiment

To obtain these quantities, the following numerical

experiment was conducted.

While over critically damping the system by an artificial

damping constant, the bias field in x-direction was slowly

turned on. Hence, the ribbon elongates as it is not constrained

in any way. When the system reached its idle state, the local

distributions of the quantities of interest were extracted to

characterize the static conditions in the biased ribbon.

To gain insights into the dynamics of the oscillating rib-

bon, a similar simulation was repeated. But this time, an

additional DC excitation field of 1 A/m parallel to the bias

field was turned on together with the bias field. Then, the

damping was switched off. Subsequently, the excitation field

was turned off within 10 ls in the form the descending half

of a cosine period. This falling edge in the total applied field

excites oscillations of the ribbon.

With the bias field staying turned on, the local oscilla-

tion amplitudes of the respective quantities were determined.

They are defined as half difference between the occurring

maximum and minimum values in the time series. The fre-

quency spectrum of the oscillation at a certain bias field was

obtained by an FFT of a 2.5 ms long time series of the oscil-

lating length of the ribbon. For the FFT, a Hanning window

was used. It should be noted that the resulting amplitudes

and spectra depend on the form and strength of the excitation

field. However, the principle patterns and fundamental fre-

quencies are widely independent from the excitation field.

B. Results

The spatial distribution inside the static ribbon and its

dependence on the external bias field is plotted in Fig. 9. In

these 2D-plots, each vertical line of pixels represents the spa-

tial distribution of the respective quantity along the ribbon’s

long axis at a certain strength of the applied bias field.

The magnetization is plotted in Fig. 9(a). Despite the ho-

mogeneous external bias field, the magnetization inside the

ribbon always has a distinct maximum at the center. This

is due to the ribbon’s demagnetizing stray field, which is

strongest at the two edge regions. The overall pattern is

determined by two regimes: For lower bias fields, the suscep-

tibility (Fig. 9(b)) is constant and the magnetization is pro-

portional to the inner magnetic field (i.e., the superposition

of bias field and stray field). For bias fields above 750 A/m,

the magnetization of the center region starts to saturate, the

susceptibility becomes zero. In Fig. 9(c), the Delta-E effect

is plotted. The values were calculated according to Eq. (2)

FIG. 9. Simulated spatial distribution of various quantities inside a static

magnetostrictive ribbon as a function of the applied external bias field (hori-

zontal axis). The position along the x-axis of the ribbon is represented by the

vertical axis of each frame. For the simulation, the parameters from Table I

with l¼ 40 mm and Ha¼ 380 A/m have been used. (a) Relative magnetiza-

tion J=Js, (b) relative magnetic susceptibility vr=vi with vi ¼ 3644, (c) rela-

tive Young’s modulus (Delta-E effect) EH /Es, (d) magnetomechanical

coupling coefficient d.
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using the simulated local quantities of the susceptibility and

magnetization. The softening of the magnetostrictive ribbon

(lowering of its effective Young’s modulus) reaches its max-

imum for highly magnetized but not yet saturated areas. The

dependence of the resonant frequency on the applied field

(compare Fig. 7) is largely determined by the softening of

the ribbon’s center region. The influence of Young’s modu-

lus in the ribbon’s off-centered areas can be seen from the

fact that even when Young’s modulus in the ribbon’s center

is saturated, its resonant frequency is not. The coupling coef-

ficient (Fig. 9(d)) follows a similar pattern like the Delta-E

effect: There is no first order magnetostrictive effect for

small magnetizations (see Eq. (8)), nor do small changes of

mechanical quantities have any influence on the magnetiza-

tion of magnetically saturated regions.

The spatial distribution of the oscillation amplitudes of

strain, magnetization, and stress inside a vibrating ribbon is

plotted in Figs. 10(a)–10(c). Both strain (a) and magnetiza-

tion (b) oscillate around their respective profiles of the idle

state, which are given by the afore described bias magnetiza-

tion (see Fig. 9(a)) and the according magnetostrictive strain.

The stress (c) oscillates around zero, as the ribbon is not con-

strained on any side. All three amplitudes show a similar

profile. The oscillation is zero at zero bias field as there does

not exist any magnetomechanical coupling. With an increas-

ing bias field, the plotted amplitudes are approximately pro-

portional to the static magnetomechanical coupling constant

in the center region of the ribbon (compare Fig. 9(d)).

Therefore, the oscillation immediately nearly ceases when

the magnetization starts to saturate there.

The Fourier spectra of the oscillating total length of the

ribbon are plotted in Fig. 10(d). The vertical axis represents

the frequency domain at a certain bias field. When the center

region is magnetically saturated the maximum oscillation

amplitudes no longer occur in the center but in the upper and

lower thirds of the ribbon. Hence, the higher harmonics gain

more weight at these bias fields. The fundamental oscillation

mode reaches its maximum amplitude at a bias field of

700 A/m with a frequency of 40.6 kHz. The maximum am-

plitude of the third harmonic is only 0.2% of the maximum

fundamental amplitude. It occurs at a bias field of 860 A/m

with a frequency of 157.8 kHz. And the peak amplitude of

the fifth harmonic is only 0.04% of the maximum fundamen-

tal amplitude. It occurs at a bias field of 1300 A/m with a fre-

quency of 277.5 kHz.

VI. CONCLUSION

In summary, we deduced a numerical model, which

describes the longitudinal vibration dynamics of magneto-

strictive ribbons. The model is valid for anhysteretic

hard-axis magnetization processes induced by an external

time-dependent magnetic field. It accounts for magneto-

static coupling and non-linear relations of the magnetiza-

tion to strain and the magnetic field. The model was tested

by both measuring and simulating the field-dependent reso-

nant frequencies of six sample ribbons with different

lengths and anisotropy fields. It was shown that the model

reproduces the qualitative behavior very well and also

yields fair agreement of the absolute values of the resonant

frequencies as a function of the external field. At this only,

the unknown Young’s modulus of the used material was fit-

ted. If input parameters like the saturation magnetization

are slightly adapted, the simulation results match the meas-

ured frequencies even almost exactly. It should be stressed

out that only two fit parameters are used to reproduce the

whole frequency-field-dependence of all of the different

sample ribbons. Finally, the simulated static local quantities

of the magnetically biased ribbon were presented and

linked to the field dependence of the resonant frequency.

Also the simulated local amplitudes during the oscillation

FIG. 10. Simulated spatial distribution of the oscillation amplitudes of vari-

ous quantities inside a longitudinally vibrating magnetostrictive ribbon as a

function of the applied external bias field (horizontal axis). The oscillation

was excited by a falling edge in the applied field of 1 A/m within 10 ls. The

falling edge had the form of half a period of a cosine. The position along the

x-axis of the ribbon is represented by the vertical axis of each frame. For the

simulation, the parameters from Table I with l¼ 40 mm and Ha¼ 380 A/m

have been used. (a) Relative amplitude of the strain e, where 1 corresponds

to 4.86 nm, (b) relative amplitude of the magnetic polarization J, where 1

corresponds to 0.99 mT, (c) relative amplitude of the stress r, where 1 corre-

sponds to 9.66 kPa, (d) Fourier spectra of the oscillation of the ribbon length,

where the vertical axis represents the frequency domain (arbitrary units).
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and their connection to higher harmonics in the frequency

spectra were discussed.
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APPENDIX: ANALYTICALLY SOLVABLE LIMITING
CASE: HOMOGENEOUS INNER MAGNETIC FIELD
AND SMALL STRAIN AMPLITUDES

Assuming a homogeneous inner magnetic field H and

small stress amplitudes, the equation of motion (4) with (10)

can be simplified. From the simplified form, an expression

for the Delta-E effect can be found. Therefore, an explicit

expression for r has to be obtained from (10). This can be

done by approximating the term m2 H; rð Þ by a Taylor expan-

sion in r at r ¼ r0 to the first order.

m2ðH; rÞ ¼ m0
2 HtðrÞð Þ;

� m0
2jHtðr0Þ þ

@ m0
2ð Þ

@r

����
Htðr0Þ
ðr� r0Þ;

¼ m0
2 þ 2 m0jHtðr0Þ

@m0

@Ht

����
Htðr0Þ

@Ht

@r

����
r0

ðr� r0Þ;

¼ m0
2jHtðr0Þ þ 2

l0

Js

ðv m0Þ
����
Htðr0Þ

� 1� r0

rc

� ��2 1

rc

H ðr� r0Þ: (A1)

Choosing r0 ¼ 0 and substituting rc by (12) and (13) yields

m2ðH; rÞ ¼ m0
2

����
H

þ 6ksl0

J2
s

ðv m0Þ
����
H

H

HA

r: (A2)

Inserting (A2) in (10) yields (without denoting the

H-dependence)

r ¼ Es

@u

@x
� 3ks

2
m0

2 þ 6ksl0

J2
s

v m0

H

HA

r� 1

3

� �� �
: (A3)

This linear equation in r can be solved easily

r � Es

1þ Es
9k2

s l0

J2
s

v m0
H

HA

@u

@x
� 3ks

2
m0

2 � 1

3

� �� �
: (A4)

With the assumed homogeneous material and homogeneous

inner field H, the only position-dependent quantity in the

above expression is @u
@x. When inserting (A4) in (4), all homo-

geneous terms can be dropped. Using (7), the equation of

motion reads

q
@2

@t2
uðx; tÞ ¼ Es

1þ Es
9k2

s l0

J2
s

v m0
H

HA

@

@x2
uðx; tÞ: (A5)

Compared with the equation of motion of a non-

magnetostrictive material

q
@2

@t2
uðx; tÞ ¼ Eeff

@

@x2
uðx; tÞ: (A6)

One can conclude that the effective Young’s modulus for the

dynamics of a magnetostrictive material can be calculated in

the limits of a first-order approximation regarding r by

1

Eeff

¼ 1

Es

þ 9k2
s l0

J2
s

v m0

H

HA

: (A7)

This expression for the Delta-E effect is very similar to the

expression (2) obtained by Herzer. They would be equal for

v m0
H

HA
¼ v m0

2, which is the case for linear or saturated mag-

netization. For a linear magnetization, both expressions lead to

1

Eeff

¼ 1

Es

þ 9k2
s H2

JsH3
A

; (A8)

which is exactly the expression for the Delta-E effect

obtained by Livingston.5 The one-dimensional equation of

motion (A8) with constant Eeff can be solved analytically.

When calculating the dynamics of a real magnetostrictive

sample, the assumptions made in this section do not apply.

In a homogeneous and constant external bias field, the inner

magnetic field is generally not homogeneous nor is it con-

stant. The latter is caused by the oscillating stray field, which

superposes the constant bias field. To account for both

effects, the magnetostatic problem has to be solved simulta-

neously with the equation of motion.
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