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We develop in full detail the formalism of tangent states to the manifold of matrix product states, and show
how they naturally appear in studying time evolution, excitations, and spectral functions. We focus on the case
of systems with translation invariance in the thermodynamic limit, where momentum is a well-defined quantum
number. We present some illustrative results and discuss analogous constructions for other variational classes.
We also discuss generalizations and extensions beyond the tangent space, and give a general outlook towards
post-matrix product methods.
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I. INTRODUCTION

The last two decades have witnessed a tremendous cross
fertilization between different branches of theoretical physics,
including condensed matter physics, quantum information
theory, and renormalization group theory, with even some
ingredients of quantum gravity added to the picture. One
of the major breakthroughs along this line of research was
the development of the density matrix renormalization group
(DMRG) by White,1,2 which has quickly evolved to become
the standard numerical tool for finding ground states of
one-dimensional quantum spin systems. It was later realized
that DMRG corresponds to a variational method that optimizes
over a class of states which are known as matrix product
states (MPS).3,4 Insight from quantum information theory
resulted in the development of many extensions of the original
DMRG method. For example, more general Ansätze known
as tensor network states have been formulated for systems
in higher dimensions.5–7 Another important development
was the formulation of the so-called time-evolving block
decimation (TEBD) by Vidal8 for studying real-time evolution
of one-dimensional quantum lattice Hamiltonians using the
formalism of MPS.

In condensed matter physics and quantum field theory, most
interesting quantum systems, aside from quantum dots, are of
macroscopic size in at least one spatial dimension, and the
main interest is often in the bulk properties of these systems,
without any boundary or finite-size influences.9 Here too,
the formalism of MPS has a nice advantage over alternative
numerical approximation methods, as they can be formulated
directly in the thermodynamic limit and still depend on
only a finite number of parameters when the system under
study exhibits translation invariance. These states are now
known as uniform MPS (uMPS), but had in fact already been
formulated before the development of DMRG under the name
finitely correlated states,10 which served as a generalization
of the valence bond construction for the spin-1 model by
Affleck, Kennedy, Lieb, and Tasaki (AKLT).11,12 The TEBD
with imaginary-time evolution was among the first methods
that was actually able to efficiently optimize over these
variational parameters,13 although other algorithms have now
been formulated.14,15

The low-energy physics of the bulk is not determined by the
ground state alone, but requires knowledge of the spectrum of

bulk excitations. These excitations are almost always present in
the laboratory, either due to finite temperature, because the sys-
tem is being perturbed by probes in spectroscopy experiments,
or because parameters of the system are being quenched.
Recently, new algorithms were formulated for studying time
evolution15 and for describing the elementary excitations16,17

that depend strongly on the concept of tangent vectors to the
original variational manifold of uMPS. Analogous results have
also been formulated for generic MPS on finite lattices.18,19

Indeed, it was recently understood that the set of MPS (generic
and uniform) with a given bond dimension constitutes a smooth
manifold M embedded in the full Hilbert space H, where the
MPS parametrization can be recognized as a principal fiber
bundle.20 More precisely, the set of physical states constitutes
a Kähler manifold, which expresses the fact that the complex
structure is compatible with the Riemannian geometry that is
obtained when inducing the standard Euclidean metric of H
onto M. (Since the metric also defines a closed 2-form, the
manifold additionally has a symplectic structure.) This allows
us to identify the tangent space of M with a complex subspace
of H. Similar constructions were simultaneously developed
in the field of numerical analysis, where real-valued tensor
networks are also becoming increasingly popular.21,22 Whereas
Ref. 20 focused on a rigorous study of the differential geometry
of MMPS and its tangent space, the current paper focuses on
the physical relevance of these tangent states.

In Sec. II, we summarize the necessary ingredients from
Ref. 20 that will be used throughout the remainder of this
paper. Section III explores in full detail the time-dependent
variational principle (TDVP) which was introduced in Ref. 15.
The TDVP is a general prescription for the optimal way to
approximate a time-evolving quantum state within a given
variational manifold. As such, it does not yet take us outside
of the manifold of uMPS. Section IV then explains why the
tangent space itself is also useful as a variational subspace
for the study of elementary bulk excitations of a system, and
relates this to linear response theory. We also show how the
tangent space can be used to get a quick estimate of spectral
functions. The algorithms presented in this section should
thus be considered as post-MPS methods that allow us extract
dynamical information from new variational subspaces that
are beyond, but based on, the original MPS manifold. We
then illustrate the power of these methods by considering
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some explicit examples in Sec. V. We briefly compare our
methods to analogous constructions that were developed the
context of other variational classes, in particular mean field
theory, in Sec. VI. Finally, Sec. VII introduces extensions and
generalizations that even takes us beyond the MPS tangent
space and gives an outlook on how this will eventually result
in the development of a new Fock space on top of the MPS
vacuum. Finally, the key concepts of this paper are summarized
in Sec. VIII.

II. MANIFOLD OF UNIFORM MATRIX PRODUCT STATES
IN THE THERMODYNAMIC LIMIT

This section summarizes the definition and key properties
of the variational manifold of uMPS, which were derived
in full detail in Ref. 20. Readers familiar with that paper
can safely skip this section. A proper treatment of quantum
states in the thermodynamic limit requires a description in
terms of C∗ algebras, which is how finitely correlated states
were originally constructed.10,23 We employ the results from
these papers, but adopt a physics-style notation which is to be
understood as a limiting procedure of finite lattices on which
our definitions are meaningful. Even then, this thermodynamic
limit requires careful attention due to intricate effects such as
infrared divergences and the orthogonality catastrophe.24 We
will emphasize the necessary steps required to avoid these
intricacies and obtain consistent results.

A. Definition and properties of the manifold

Consider a one-dimensional lattice L ⊂ Z with |L| =
2N + 1 sites labeled by the integer n ∈ L = {−N, . . . ,N}.
Every site n contains a d-dimensional quantum vari-
able, so that local Hilbert space Hn

∼= Cd is spanned by
a basis {|sn〉 | sn = 1, . . . ,d}. The total Hilbert space is
given by H = ⊗N

n=−N Hn and is spanned by the product
basis

|s〉 = |s−N 〉−N ⊗ . . . ⊗ |s0〉0 ⊗ . . . ⊗ |sN 〉N . (1)

In the thermodynamic limit N → ∞, a uniform matrix product
state |�(A)〉 ∈ H is defined as

|�(A)〉 �
d∑

{sn}=1

tr[V . . . As−1As0As+1 . . .] |s〉 , (2)

and is parametrized by a tensor A ∈ A ∼= CD×d×D or, in an
alternative interpretation, by a set of complex D × D matrices
As , for s = 1, . . . ,d. The matrix dimension D is known
as the bond dimension. The D × D matrix V encodes the
boundary conditions, namely, V = 1 corresponds to periodic
boundary conditions whereas V should be a rank-1 object
(i.e., V = vRv

†
L with vL,R ∈ CD) for a system with open

boundary conditions. Based on the results from Refs. 10
and 23, it was shown in Ref. 20 that the expectation value
of local observables is well defined and independent of the
boundary matrix V when A is an element from the open
subset A ⊂ A which is known as the set of injective MPS
or of pure finitely correlated states. Equivalently, the set A
corresponds to all tensors A for which the transfer matrix
E = ∑d

s=1 As ⊗ A
s

has a single eigenvalue ω(1) = ρ(E) with

ρ(E) the spectral radius of E, whereas all other eigenvalues
ω(i), i = 2, . . . ,D2, satisfy |ω(i)| < ρ(E). Furthermore, the left
and right eigenvectors (l| and |r) corresponding to ω(1), when
written as positive-semidefinite Hermitian matrices, should
have full rank, i.e., they should be strictly positive definite. To
obtain a normalizable state, the tensor A ∈ A should then be
“renormalized” as A/

√
ω(1) so that the spectral radius of the

transfer matrix becomes 1.
Let now M ⊂ H denote the set of states {|�(A)〉 |A ∈

A}. The state |�(A)〉 is invariant under a reparametrization
A ← AG where As

G = G−1AsG for any invertible matrix
G ∈ GL(D,C). This invariance is known as gauge invariance,
and the map (A,G) → AG represents the (right) group action
of the gauge group G ∼= PGL(D,C), where we had to define
the gauge group G as the projective linear group PGL(D,C)
obtained by taking the quotient of GL(D,C) with its center
subgroup GL(1,C) of matrices G which are proportional to
the unit matrix, since these choices have the trivial effect
AG = A. By restricting to the open subset A ⊂ A, one can
then show that the group action is free and proper. These
properties express that the group action is sufficiently nice to
obtain a smooth quotient space A/G. The injectivity property
of the MPS ensures that this quotient space is diffeomorphic
(and in fact biholomorphic) to the set of states M, thus also
turning the latter one into a smooth (complex) manifold. The
MPS representation that maps the tensor A ∈ A to the physical
state |�(A)〉 ∈ M and exhibits invariance under the action of
G can thus be given the structure of a principal fiber bundle,
which is a useful identification when also studying the tangent
space of A and M in the next section.

We now introduce some notations that are used throughout
the remainder of this paper. Since we always assume that A ∈
A, the transfer matrix E = EA

A has a unique eigenvalue ω(1)

that can scaled to be exactly one with corresponding left and
right eigenvectors (l| and |r) corresponding to strictly positive-
definite matrices l and r that we assume to be normalized
as (l|r) = tr[lr] = 1. All other eigenvalues ω(k), k > 1, lie
strictly within the unit circle. We also define S = |r)(l| as a
projector onto the eigenspace of eigenvalue 1, and its comple-
ment Q = 1 − S. Note that the right action of the transfer
matrix on a vector |x) can also be encoded as a completely
positive map

E : CD → CD : x �→ E(x) =
d∑

s=1

AsxAs†. (3)

The dual map

Ẽ : CD → CD : y �→ Ẽ(y) =
d∑

s=1

As†yAs (4)

encodes the left action on a vector (y|. The actions of these
maps can be computed with computing time that scales O(D3),
so that l and r (eigenvectors corresponding to the largest
eigenvalue) can efficiently be computed using an iterative
eigensolver. While we do not assume that the tensor A satisfies
any gauge fixing condition in any formula in this paper, it is
often convenient to use the left (l = 1,

∑
s As†As = 1) or right
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(r = 1,
∑

s AsAs† = 1) gauge fixing condition in numerical
implementations.

Given a set of local operators Ôα , we can use these
definitions to compute the two-point connected correlation
function as

�(α,β)(n) = (l|EOαEn−1EOβ |r) − (l|EOα |r)(l|EOβ |r)

= (l|EOαQ
(
QEQ

)n−1
QEOβ |r), (5)

where we have used

En − S = QEnQ = Q
(
QEQ

)n
Q.

The correlation length ξ is then determined by the largest
eigenvalue of QEQ as

ξ = − 1

ln [ρ(QEQ)]
. (6)

Under the given assumption, ρ(QEQ) < 1 and the correlation
length ξ is finite. Hence, all injective uMPS are exponentially
clustering.10 The correlation length is determined by ρ(QEQ),
which is equal to the eigenvalue of the transfer matrix E that
is second largest in absolute value.

B. Tangent space and momentum eigenstates

We now discuss the structure of the tangent space of the
manifold of uMPS M and the parametrization thereof. We
first introduce the notation

|	(A)(B)〉
= |	(B; A)〉 = Bi∂i |�(A)〉

=
∑
n∈Z

d∑
{sn}=1

v
†
L

[(∏
m<n

Asm

)
Bsn

(∏
m′>n

Asm′

)]
vR |s〉 , (7)

where ∂i = ∂ /∂Ai and the index i is shorthand for a collective
index (α,β,s) combining the two virtual indices and the phys-
ical index of tensor A, i.e., A(α,β,s) = As

α,β . The tensor B can
take values in the tangent space of parameter space TAA at the
point A. Since the subset of injective MPS A is an open subset
of the full parameter space A = CD×d×D , we obtain TAA ≡
A. The physical states |	(B; A)〉 for B ∈ A = CD×d×D span
the tangent space T|�(A)〉M. More completely, we can interpret
this whole construction as mapping elements (B; A) of the
tangent bundle TA to elements (|	(B; A)〉 , |�(A)〉) of the
tangent bundle TM ⊂ H × H, where 	 should be recognized
as the tangent map of �, which is necessarily linear in its first
argument.

For the application of the variational principle to the
study of translation-invariant phenomena, this tangent space
(consisting completely out of translation-invariant states) is
sufficient. However, we can also interpret |�(A)〉 as a special
point in the larger class of general MPS with site-dependent
matrices, and define generalized tangent vectors

|	(A)[B]〉 =
∑
n∈Z

d∑
{sn}=1

v
†
L

[(∏
m<n

Asm

)
Bsn (n)

×
(∏

m′>n

Asm′

)]
vR |s〉 , (8)

where we use square brackets to denote a “functional depen-
dence” on a set of site-dependent tensors B = {B(n)}n∈Z. This
larger tangent space is denoted as T|�(A)〉 and turns out to be
important when studying excited states, for which translation
invariance is no longer a good assumption. However, when
both the Hamiltonian and its ground state are translation
invariant, we know that we can label the excited states by
a momentum quantum number p ∈ [−π,π ). The momentum
p sector T|�(A)〉

p of the larger tangent space T|�(A)〉 is obtained
by choosing Bs(n) = Bseipn, and we define

|	p(B; A)〉 = ∣∣	(A)
p (B)

〉 = ∑
n∈Z

eipn

d∑
{sn}=1

v
†
L

×
[(∏

m<n

Asm

)
Bsn

(∏
m′>n

Asm′

)]
vR |s〉 , (9)

with thus |	0(B; A)〉 = |	(B; A)〉. Hence, 	(A)
p represents

a linear map from A to the momentum p sector of the
tangent space T|�(A)〉 ⊂ H at the translation-invariant point
|�(A)〉. The full tangent space is obtained as T|�(A)〉 =∫ ⊕
p∈[−π,π) T

|�(A)〉
p .

We now repeat in detail some calculations using the
tangent states |	p(B; A)〉 from Ref. 20 to point out possible
divergences that can occur. We introduce the generalized
notation EA

B = ∑d
s=1 As ⊗ B

s
, which will be used extensively

when evaluating expectation values with tangent vectors. We
first compute the overlap between a tangent vector and the
original uMPS |�(A)〉 and obtain

〈�(A)|	p(B; A)〉 =
∑
n∈Z

eipn
(
l
∣∣EB

A

∣∣r) = 2πδ(p)
(
l
∣∣EB

A

∣∣r)
(10)

so that all states |	p(B)〉 with p �= 0 are automatically
orthogonal to |�(A)〉 due to the orthogonality of the dif-
ferent momentum sectors. For p = 0, 〈�(A)|	0(B; A)〉 is
proportional to (l|EB

A|r), with a diverging proportionality
factor 2πδ(0) = |Z| where the cardinality |Z| represents
the diverging number of lattice sites (L = Z). It is use-
ful to define an orthogonal complement T(A)⊥

p , which is

equal to T|�(A)〉
p if p �= 0 and only contains the tangent

vectors for which the tensor B satisfies the linear relation
(l|EB

A|r) = 0 if p = 0. We will discuss the physical relevance
of restricting to this orthogonal subspace in the following
sections.

Next, we compute the overlap between two tangent vectors
〈�p′ (B ′; A)|�p(B; A)〉. We have to be very careful with the
infinite sums over the positions n ∈ Z and n′ ∈ Z of B

and B ′. When a diverging result is obtained, it is easily
possible to make errors by miscounting. Only when the
result is guaranteed to be finite can we freely use index
substitutions. We therefore replace every occurrence of En by
a “regularized” operator QEnQ = EnQ = QEn = En − S =
Q(QEQ)nQ with ρ(QEQ) < 1 and a “singular” part S =
|r)(l|. The reason of this notation becomes clear if we now

075133-3



HAEGEMAN, OSBORNE, AND VERSTRAETE PHYSICAL REVIEW B 88, 075133 (2013)

evaluate 〈�p(B; A)|�p′(B ′; A)〉 as

〈	p(B; A) | 	p′ (B ′; A)〉 = B
ı
Nı,j (p,p′; A,A)B ′j =

+∞∑
n=−∞

+∞∑
n′=−∞

e+ip′n′−ipn
[
θ (n = n′)(l|EB ′

B |r)

+ θ (n′ > n)(l|EA
B(E)n

′−n−1EB ′
A |r) + θ (n′ < n)(l|EB ′

A (E)n−n′−1EA
B |r)

]
=

+∞∑
n0=−∞

ei(p′−p)n0

+∞∑
�n=−∞

eip�n
[
θ (�n = 0)(l|EB ′

B |r)

+ θ (�n > 0)(l|EA
BQE�n−1QEB ′

A |r) + θ (�n < 0)(l|EB ′
A QE−�n−1QEA

B |r)
]

+ (l|EA
B |r)(l|EB ′

A |r)
+∞∑

n=−∞

n−1∑
n′=−∞

eip′n′−ipn + (l|EB ′
A |r)(l|EA

B |r)
+∞∑

n=−∞

+∞∑
n′=n+1

eip′n′−ipn.

In these expressions, we have introduced a “discrete” Heaviside function θ taking a logical expression as argument and resulting
1 if the argument is true. We have denoted the matrix elements of this overlap with respect to B and B ′ as Nı,j (p,p′; A,A), where
[Nı,j ] is referred to as the effective norm matrix. The explicit dependence on both A and A is used to indicate that it is not a
holomorphic function of A alone. There is no point in trying to compute the overlap between two tangent vectors |	p(B; A)〉 and
|	p′ (B ′; A′)〉 at different gauge-inequivalent points A and A′, as this overlap is automatically zero, which can be considered as a
generalization of Anderson’s orthogonality catastrophe.24 By using the well-known result for the geometric series of an operator
with spectral radius smaller than one, we obtain

+∞∑
n=0

QEnQ =
+∞∑
n=0

Q(QEQ)nQ = Q(1 − QEQ)−1Q (11)

and thus

〈	p(B; A)|	p′(B ′; A)〉 = B
ı
Nı,j (p,p′; A,A)B ′j = 2πδ(p − p′)B

ı
Nı,j (p; A,A)B ′j

= 2πδ(p′ − p)
[
(l|EB ′

B |r) + (l|EA
BQ(1 − eipQEQ)−1QEB ′

A |r)

+ (l|EB ′
A Q(1 − e−ipQEQ)−1QEA

B |r) + (2πδ(p) − 1)(l|EB ′
A |r)(l|EA

B |r)
]
. (12)

As expected, momentum eigenstates can not be normalized
to unity in an infinitely large system, but rather satisfy a δ

normalization. For equal momenta, Nı,j (p,p; A,A) contains
the diverging prefactor 2πδ(0) = |Z|. The remaining part has
been denoted as Nı,j (p; A,A) and can be extracted from the
terms inside the square brackets. Inside these brackets, the
regular part QEQ produces a finite contribution where B and
B ′ are strongly connected. We therefore also refer to these
terms as the connected contribution. For p = 0, the product
Q(1 − e±ipQEQ)−1Q can be interpreted as the pseudoinverse
of the singular superoperator 1 − E, which has an eigenvalue
zero associated to the left and right eigenvectors (l| and |r).
We henceforth define (1 − e±ipE)P = Q(1 − e±ipQEQ)−1Q,
so that (1 − E)P(1 − E) = (1 − e±ipE)(1 − e±ipE)P = Q =
1 − |r)(l|. Only for zero momentum does (1 − e±ipE)P

denote a true pseudoinverse. For momentum zero, there is
an additional divergence inside the square brackets coming
from the singular part S. Here, B and B ′ appear in two
separate factors, and this term is henceforth referred to as
the disconnected contribution. Using Eq. (10), this term can
be traced back to the nonzero overlap with the original uMPS
|�(A)〉. It disappears for tangent vectors in T(A)⊥

p . Note also

that for momentum zero, Nı,j (0,0,A,A) can be identified with
the metric of the uMPS manifold.

The parametrization of tangent vectors inherits the gauge
invariance of the MPS |�(A)〉, whereby |	p(B; A)〉 =
|	p(BG; AG)〉. By fixing the representation A of the base

point |�(A)〉, this “multiplicative” gauge invariance is also
fixed. Nevertheless, the linear map 	(A)

p : A �→ T|�(A)〉
p still

has a nontrivial null space which can be associated with
infinitesimal gauge transformations of the MPS |�(A)〉. Since
the full tangent space T|�(A)〉 was obtained by interpreting the
uMPS |�(A)〉 as a special point in the space of generic MPS,
we have to consider site-dependent gauge transformations
that take As(n) = As to As

G(n) = G(n − 1,η)−1AsG(n,η) for
a one-parameter family of gauge transformations G(n,η) =
exp[ηx(n)]. Expressing the invariance of the MPS at first order
in η for a choice x(n) = x exp(ipn) allows us to conclude that
|	(A)

p (B)〉 = 0 for B = N(A)
p (x), where the action of N(A)

p is
given by

N(A)
p : x �→ N(A)s

p (x) = Asx − e−ipxAs,∀ s = 1, . . . ,d.

(13)

The map N(A)
p establishes an isomorphism between the null

space N(A)
p of the map 	(A)

p and the Lie algebra of the gauge
group, which is equal to gl(D,C) = CD×D for p �= 0 and to
pgl(D,C) = {x ∈ CD×D| tr[x] = 0} for p = 0. It can easily
be checked that this is an isomorphism by trying to determine
the null space of the map Np. By multiplying Ns

	p
(x) = 0

(∀ s = 1, . . . ,d) to the left with (As)† and summing over s,
we obtain the requirement

E|xr) = e−ip|xr). (14)
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For p �= 0, this equation has no solutions, whereas for p = 0,
the only solutions are matrices x proportional to the unit
matrix 1D , which is not within the algebra pgl(D,C) of
traceless matrices. For nonzero p, we thus obtain dimTp =
dimA − dimN(A)

p = (d − 1)D2, while we obtain dimT0 =
(d − 1)D2 + 1 for zero momentum. But, of course, |�(A)〉 ∈
T|�(A)〉

0 , and restricting to the part T⊥
0 that is orthogonal to

|�(A)〉 also reduces the dimension to dimT⊥
0 = (d − 1)D2.

Within the language of principal fiber bundles, the null space
N(A)

p is known as the vertical subspace, and for any B ∈ A,
B ′ ∈ N(A)

p we obtain |	(A)
p (B + B ′)〉 = |	(A)

p (B)〉. Therefore,
we sometimes refer to this as an additive gauge freedom in
the parametrization of MPS tangent vectors. Since the vectors
B = N(A)

p (x) in the null space N(A)
p are also eigenvectors with

zero eigenvalue of the effective normalization matrix Nı,j (p),
as well as of any other effective operator Oı,j (p) that we
obtain by restricting a physical operator Ô to the tangent
space T|�(A)〉

p , we also refer to them as null modes. In order
to associate a unique parametrization to every tangent vector
|	(A)

p (B)〉 ∈ Tp, we should define a complementary spaceB(A)
p

such thatA = B(A)
p ⊕ N(A)

p and restrict to parametrizations B ∈
B(A)

p ⊕p. While there is no unique definition for B(A)
p (referred

to as the horizontal subspace), a gauge-covariant description
would be such that BG ∈ B(AG)

p for any B ∈ B(A)
p . This is

easily accomplished using the machinery of principal bundle
connections.20 We only mention the result. Two different
choices for B(A)

p are obtained as the subspace of solutions of
one of the two following linear homogeneous sets of equations,
which we can then call gauge fixing conditions for the additive
gauge freedom:

(i) Left gauge fixing condition:

d∑
s=1

As†lBs = 0 ⇔ (l|EB
A = 0. (15)

(ii) Right gauge fixing condition:

d∑
s=1

BsrAs† = 0 ⇔ EB
A|r) = 0. (16)

Since these conditions are D2 dimensional, they fix all D2

linearly independent gauge transformations in N(A)
p for p �= 0.

For p = 0, there are only D2 − 1 linearly independent gauge
transformations, and these D2 gauge fixing conditions also
include norm preservation, i.e., they imply 〈�(A)|	0(B)〉 = 0
or thus |	0(B)〉 ∈ T|�(A)〉⊥

0 . Note that the horizontal subspaces
B(A)

p defined by these equations are momentum independent,
even though the vertical subspace N(A)

p did explicitly depend
on the momentum p. Since we will explicitly be using either
of the two conditions from Eqs. (15) and (16), the horizontal
subspace is henceforth denoted as B(A) without any reference
to the momentum p.

Either choice for B(A) results in a considerable simplifica-
tion of the effective norm matrix since all nonlocal terms in
Eq. (12) cancel:

〈	p(B; A)|	p(B; A)〉 = 2πδ(p′ − p)(l|EB ′
B |r). (17)

However, this simplification is only really useful if we can
directly parametrize tensors B ∈ B(A). A linear parametriza-
tion B = B(A)(X) depending on a D × D(d − 1) matrix X

that satisfies Eq. (15) can be constructed. We first define the
D × Dd matrix L as

[L]α;(β,s) = [As†l1/2]α,β (18)

and then construct a dD × (d − 1)D matrix VL which contains
an orthonormal basis for the null space of L, i.e., LVL = 0 and
V

†
LVL = 1(d−1)D . Setting [V s

L]α,β = [VL](α,s);β , we then define
the representation B(A)s(x) as

B(A)s(X) = l−1/2V s
LXr−1/2 (19)

in order to obtain

〈	p′ (B
(A)

(X))|	p(B(A)(Y ))〉 = 2πδ(p − p′) tr[X†Y ], (20)

in combination with the left gauge fixing condition∑d
s=1 As†lB(A)s(X) = 0. An alternative representation for

tensors B satisfying the left gauge fixing conditions follows
similarly.

III. TIME-DEPENDENT VARIATIONAL PRINCIPLE

After White’s formulation of the DMRG, another major
breakthrough was the formulation of DMRG-inspired algo-
rithms to study dynamic properties of quantum spin chains.
These algorithms can be divided into two classes: some
algorithms directly probe spectral functions, whereas other
algorithms aim to approximate the full time-evolving wave
function. These methods are reviewed by Schollwoeck and
White25 and Jeckelmann.26 Today’s best-known and most
powerful method for approximating the time-evolving wave
function within the MPS manifold is the time-evolving block
decimation (TEBD), which was developed by Vidal.8 It was
later reformulated in order to be compatible with traditional
DMRG implementations.27,28 The TEBD is based on an itera-
tive application of a Lie-Trotter-Suzuki decomposition29,30 of
the exact evolution operator for a small time step dt as

exp(iĤ dt) = exp(iĤ (A)dt) exp(iĤ (B)dt) + O(dt2). (21)

Higher-order decompositions with an error of O(dtp) are also
possible.31 Ĥ (A) and Ĥ (B) provide a decomposition of the
(possibly time-dependent) Hamiltonian Ĥ = Ĥ (A) + Ĥ (B),
such that Ĥ (A) and Ĥ (B) separately contain local terms that
all commute. If necessary, a decomposition into more than
two parts is also possible. For a nearest-neighbor Hamiltonian
Ĥ = ∑

n∈Z ĥn,n+1, a possible decomposition scheme is into
even and odd terms: Ĥ (A) = ∑

n∈Z ĥ2n,2n+1 and Ĥ (B) =∑
n∈Z ĥ2n+1,2n+2. The individual operators exp(iĤ (A)) and

exp(iĤ (B)) then split into a product of local unitaries that
can be dealt with in a parallelized and efficient way. When
applied to a generic MPS, the individual evolution operators
take the state outside the original manifold since they have
the effect of increasing the virtual bond dimension. Once
a given maximum bond dimension has been reached, one
then approximates the newly obtained state by an MPS
with this maximal bond dimension. The best strategy for
truncating a single bond dimension is obtained by discarding
the smallest Schmidt values. However, since the Hamiltonian
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evolution acts on all bonds, several bond dimensions have to
be simultaneously truncated. The strategy based on discarding
the smallest Schmidt values still serves as a good initial guess
but is not optimal. For lattices L of finite size, an optimal MPS
representation with given maximal bond dimension can be
obtained by minimizing the norm difference using algorithms
inspired by the sweeping process of the finite-size algorithm
of the DMRG.32

The TEBD can also be applied to translation-invariant
systems in the thermodynamic limit. In combination with
imaginary-time evolution, this resulted in the first algorithm for
finding the best ground-state approximation within the class
of uMPS.13,33 However, no optimal strategy for truncation of
the bond dimension is known in the case of infinite lattices.
As a variational strategy, the infinite-size time-evolving block
decimation then requires a scaling of dt → 0 as the optimal
approximation is approached, in order to correct for the
truncation error. Since the exact imaginary-time evolution
automatically slows down in the neighborhood of the best
ground state (approximation), the need for a decreasing time
step induces an additional unfavorable slowing down.

In addition, both for finite and infinite systems, some
symmetries of the Hamiltonian Ĥ might not be inherited by
the individual Trotter evolution operators exp(iĤ (A)dt) and
exp(iĤ (B)dt). In itself, the Lie-Trotter-Suzuki decomposition
is symplectic, and under an exact iterative application of
the Trotter operators, errors resulting from these broken
symmetries would be strongly bound. However, the additional
truncation after every evolution step ruins the symplecticity
and drifting errors are possible. In particular, for a time-
independent Hamiltonian Ĥ , the expectation value of the
Hamiltonian is a constant of motion, but will drift away in
a simulation based on the TEBD. One last downside of TEBD
is that it can not cope with Hamiltonians containing long-range
interaction terms.

Recently, a new algorithm for approximating time-evolving
quantum states with MPS was proposed15 based on the TDVP
of Dirac.34–36 The TDVP is a general method that can be
formulated for any variational manifold and any Hamiltonian,
both with short- and long-range interactions. In combination
with the manifold of MPS, the TDVP allows one to overcome
the aforementioned shortcomings of the TEBD. Unlike TEBD,
which is necessarily formulated using discrete time steps dt ,
the TDVP is naturally formulated in continuous time. The
TDVP transforms the linear Schrödinger equation in the full
Hilbert space H into a nonlinear set of symplectic differential
equations in the parameter space of the variational manifold. If
we could solve these nonlinear differential equations exactly
in continuous time, the only source of errors would be the
restriction to the manifold itself. The TDVP describes the
best direction in which the quantum state can evolve without
leaving the variational manifold in order to approximate the
time-dependent Schrödinger equation. Hence, no truncation of
any kind is necessary. In addition, there is no need for a Trotter
decomposition and thus no corresponding Trotter error. This
approach is also perfectly applicable in case of imaginary-time
evolution (there is no symplecticity of course). It can also be
applied to Hamiltonians with long-range interactions and to
generic MPS on finite lattices19,37 or to a finite subsystem
of an infinite lattice.38 Most importantly, the TDVP can be

implemented for the case of MPS with an efficiency that
is comparable to other methods such as DMRG and TEBD
[namely O(D3)]. Of key importance for such an efficient
implementation is the use of the gauge fixing conditions for
tangent vectors, which was introduced in the previous section.

A numerical integration of the TDVP equation does of
course require a discretization of the time variable, resulting
in additional errors due to the final time step. However, since
many standard numerical integrators can be used, these errors
are well controlled and well understood from the general the-
ory of (symplectic) differential equations (on manifolds).39 We
now derive the TDVP equation based on an action formalism
for the case of uMPS in the thermodynamic limit. We then
compare the resulting equations to the geometric argument that
was used in the original publication.15 While the geometric
construction might provide a better visual insight into the
approximation made by the TDVP, the action formalism is
better suited to derive the properties of the resulting nonlinear
differential equation. We discuss the symplectic properties
of real-time evolution and discuss convergence and error
measures that can be used to assess the approximation error
made by confining the evolution to M. Finally, we outline
the details of a simple first-order Euler-based algorithm.
The numerical implementation of more advanced integration
schemes is described elsewhere.40

A. Principle of least action

The dynamics of isolated quantum systems are governed
by the time-dependent Schrödinger equation (TDSE)

i
d

dt
|�(t)〉 = Ĥ (t) |�(t)〉, (22)

which is a linear first-order differential equation in H. Note
that we allow for the Hamiltonian Ĥ to be time dependent. The
TDSE can be derived by applying the variational principle of
least action to the action functional

SH[�,�] =
∫ +∞

−∞

(
i

2
〈�(t)|�̇(t)〉 − i

2
〈�̇(t)|�(t)〉

− 〈�(t)|Ĥ (t)|�(t)〉
)

dt. (23)

We now focus on one-dimensional quantum lattice systems
with translation invariance. For notational simplicity, we
assume that the Hamiltonian contains nearest-neighbor terms
only, i.e., Ĥ = ∑

n∈Z T̂ nĥT̂ −n where T̂ is the translation
operator that shifts the system by one site and ĥ has nontrivial
support only on sites zero and one. The generalization to
interaction terms on a larger number of neighboring sites or
even long-range interaction terms is straightforward since no
Trotter-type decomposition of the Hamiltonian is required. An
initial state |�0〉 that can be encoded as a uMPS |�(A0)〉 will
in general leave the manifold of uMPS M under exact time
evolution. In order to confine the dynamics to M, we can
analogously apply the principle of least action to

SM[A,A] =
∫ +∞

−∞

(
i

2

[
Ȧj (t)∂j − Ȧ

j

(t)∂j

] 〈�(A(t))|�(A(t))〉

− 〈�(A(t))|Ĥ (t)|�(A(t))〉
)

dt, (24)
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where the square brackets indicate the functional depen-
dence on the full evolution A(t) and its complex conju-
gate. Whereas the Schrödinger equation describes a unitary
process (norm preserving) that makes the integrand of SH
exactly zero, the extremization of SM might result in a

flow equation for |�(A(t))〉 that is not norm preserving
and minimizes SM by converging to a state with zero
norm. It is therefore better to define a modified, normalized
action which does result in norm-independent dynamics
as

S̃M[A,A] =
∫ +∞

−∞

i
2

[
Ȧj (t)∂j − Ȧ

j

(t)∂j

] 〈�(A(t))|�(A(t))〉 − 〈�(A(t))|Ĥ |�(A(t))〉
〈�(A(t))|�(A(t))〉 dt

=
∫ +∞

−∞

(
i

2

[
Ȧj (t)∂j − Ȧ

j

(t)∂j

]
ln N (A(t),A(t)) − H (A(t),A(t))

)
dt, (25)

where

N (A,A) = 〈�(A)|�(A)〉 , H (A,A) = 〈�(A)|Ĥ |�(A)〉
〈�(A)|�(A)〉 .

(26)

Note that we henceforth omit the explicit time dependence
of the Hamiltonian Ĥ for the sake of simplicity. For a
time-dependent Hamiltonian Ĥ (t), the energy function H

would have an explicit time dependence [i.e., H (A,A,t)],
but this has no further effect on the resulting expressions.
When working with a uMPS |�(A)〉, we always assume
that it has been properly normalized such that ρ(EA

A) = 1
and we can set N (A,A) = 1. However, this is only true
after a normalization of the matrices As and in general
N = 〈�(A)|�(A)〉 depends on A. For the translation-invariant
nearest-neighbor Hamiltonian Ĥ = ∑

n∈Z T̂ nĥT̂ −n, we obtain

H (A,A) = |Z|h(A,A), (27)

where, for a properly normalized uMPS |�(A)〉,

h(A,A) = 〈�(A)|ĥ|�(A)〉
〈�(A)|�(A)〉 = (

l
∣∣HAA

AA

∣∣r) (28)

and we have defined a new superoperator

H
A1A2
A3A4

=
d∑

s,t,u,v=1

〈u,v|ĥ|s,t〉 As
1A

t
2 ⊗ Au

3A
v
4. (29)

If we define the norm-independent action with normalized
integrand for the full Hilbert space H as S̃H, then the stability
of S̃H with respect to variations 〈�(t)| �→ 〈�(t)| + 〈δ�(t)|
requires(

1̂ − |�(t)〉 〈�(t)|
〈�(t)|�(t)〉

)(
i
d

dt
|�(t)〉 − Ĥ |�(t)〉

)
= 0. (30)

Applying the variational principle to the modified action S̃H
thus imposes the Schrödinger equation in the plane orthogonal
to the vector |�(t)〉, whereas it leaves the evolution in the direc-
tion of the current vector |�(t)〉 unspecified. Since a nonzero
parallel component of the evolution vector (〈�(t)|�̇(t)〉 �= 0)
results in norm or phase changes, the use of the modified

action unties the restriction to a specific choice of phase
and normalization of the state. Norm-independent dynamics
within the variational manifold of uMPS are described by the
Euler-Lagrange equations of S̃uMPS, which are given by

+iÑı,j (A(t),A(t))Ȧj (t) = Hı(A(t),A(t)) (31)

and its complex conjugate. Here, we have introduced the
gradient

Hı(A,A) = ∂ıH (A,A) = 〈∂ı�(A)|Ĥ |�(A)〉
N (A,A)

− 〈∂ı�(A)|�(A)〉 〈�(A)|Ĥ |�(A)〉
N (A,A)2

(32)

and the modified metric

Ñı,j (A,A) = ∂ı∂j ln N (A,A) = Nı,j (0,0; A,A)

N (A,A)

− 〈∂ı�(A)|�(A)〉 〈�(A)|∂j�(A)〉
N (A,A)2

. (33)

Whenever we need to compute these quantities, we can
properly normalize the uMPS |�(A)〉 and assume that
N (A,A) = 1. The metric Nı,j (0,0; A,A) = 〈∂ı�(A)|∂j�(A)〉
was implicitly defined in Eq. (12). It can easily be seen that
the second term in Eq. (33) contains a double divergence (it
is proportional to |Z|2) and cancels exactly with the divergent
term within the square brackets in Eq. (12). We thus obtain

B
ı
Ñı,j (A,A)(B ′)j = |Z|[(l|EB ′

B |r) + (l|EA
B(1 − E)PEB ′

A |r)

+ (l|EB ′
A (1 − E)−1EA

B |r)

− (l|EB ′
A |r)(l|EA

B |r)
]
.

We can also evaluate the first term in Eq. (32) using the same
techniques as in the previous section. We prefer to evaluate
the more general expression 〈	p(B)|Ĥ |�(A)〉, which defines

〈∂ı�(A)|Ĥ |�(A)〉 through B
ı 〈∂ı�(A)| = 〈	0(B)|. Using

the translation-invariant Hamiltonian with nearest-neighbor
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interactions Ĥ = ∑
n∈Z T̂ nĥT̂ −n, we obtain

〈	p(B)|Ĥ |�(A)〉

=
+∞∑

n=−∞

+∞∑
n′=−∞

e−ipn
[
θ (n = n′)(l|HAA

BA|r)

+ θ (n = n′ + 1)(l|HAA
AB |r) + θ (n > n′ + 1)(l|HAA

AA

× (E)n−n′−2EB
A|r) + θ (n < n′)(l|EB

A(E)n
′−n−1HAA

AA|r)
]
.

Repeating the same tricks as for the evaluation of
〈	p′ (B ′)|	p(B)〉 leads to

〈	p(B; A)|Ĥ |�(A)〉
= 2πδ(p)

[
(l|HAA

BA|r) + (l|HAA
AB |r) + (l|HAA

AA(1 − E)P

×EA
B |r) + (l|EA

B(1 − E)PHAA
AA|r) + (|Z| − 2)

× (l|HAA
AA|r)(l|EA

B |r)
]
. (34)

As expected, the translation-invariant state Ĥ |�(A)〉 has zero
overlap with momentum eigenstates with p �= 0. Indeed, this
is a necessary condition in order to be able to approximate time
evolution within the translation-invariant manifold of uMPS.
Hence, only the tangent vectors with zero momentum feature in
the TDVP. For p = 0, the overlap is proportional to 2πδ(0) =
|Z|, which matches with the same factor in Ñı,j (A,A). As for
the metric, there is an additional divergence inside the brackets,
which is related to the nonzero overlap of the tangent vector
|	0B〉 with the original uMPS |�(A)〉 [i.e., (l|EA

B |r) �= 0].
Here too, this additional divergence cancels with the second
term in Eq. (32), resulting in

B
ı
Hı(A,A)

= |Z|[(l|HAA
BA|r) + (l|HAA

AB |r) + (l|HAA
AA(1 − E)PEA

B |r)

+ (l|EA
B(1 − E)PHAA

AA|r) − 2(l|HAA
AA|r)(l|EA

B |r)
]
.

A translation-invariant time-evolving quantum state for
a one-dimensional lattice system can thus be approximated
with a time-evolving uMPS |�(A(t))〉 where the evolution of
the parametrization A(t) is specified by Eq. (31). However,
this equation does not fully specify the time evolution of
all degrees of freedom since the modified metric Ñı,j has a
number of null modes (eigenvectors with zero eigenvalues).
First, since Bi |∂i�(A)〉 = |	0(B)〉 = 0 for any B = N

(A)
0 (x)

with x ∈ pgl(D,C), the modified metric Ñı,j ;(A,A) inherits
the D2 − 1 linearly independent null modes of Nı,j (0,0; A,A).
These null modes do not render the linear system for Ȧ

in Eq. (31) unsolvable since any null mode B = N
(A)
0 (x)

also satisfies B
ı
Hı(A,A) = 0. These modes result in gauge

transformations of the parametrization without influencing the
physical state. Hence, they are not determined by the dynamics
and will have to be fixed by a gauge fixing prescription, which
is mathematically equivalent to choosing one of the infinitely
many solutions of the linear system for Ȧ and thus to define a
pseudoinverse Ñ i,j (A,A) of the modified metric.

However, before being able to do so, we have to take into
account all null modes of the modified metric Ñı,j (A,A). Since
Ai |∂i�(A)〉 = |	0(A)〉 ∼ |�(A)〉, we have B = A as an
additional, linearly independent null mode of Ñı,j (A,A). Note

that also A
ı
Hı(A,A) = 0. The mode B = A was responsible

for the divergences of order |Z|2 in 〈∂ı�(A)|Ĥ |�(A)〉 and
〈∂ı�(A)|∂j�(A)〉, which were canceled by the second term
in Eqs. (32) and (33), respectively. This mode results in
physical changes in norm or phase, which are not fixed by
the Euler-Lagrange equation of the norm-independent action.
This can also be seen from Eq. (30). Hence, we need an
additional constraint to be able to invert Ñı,j and to fully
fix the time evolution of A(t). This boils down to fixing the
value of 〈�(A(t))| d

dt
|�(A(t))〉 = 〈�(A(t))|	(Ȧ(t))〉, which

was left unspecified by the norm-independent dynamics. Since
we would like to keep the norm of the time-evolving uMPS
|�(A(t))〉 fixed to one, we need to impose at least

d

dt
〈�(A(t))|�(A(t))〉 = 2 Re

[〈�(A(t))|	(Ȧ(t))〉] = 0.

(35)

If we also fix the freedom in phase by

Im[〈�(A(t))|	0(Ȧ(t))〉] = 0, (36)

then we effectively restrict to tangent vectors |	0(Ȧ(t))〉 ∈
T|�(A)〉⊥

0 . Hence, we are allowed to restrict to a parametrization
Ȧ(t) ∈ B(A) by imposing either the left or right gauge fixing
prescriptions defined in Eqs. (15) and (16), which allows us
to cancel many terms in the expressions for Ñı,j (A,A) and
Hı(A,A). In addition, we can then define a pseudoinverse
metric Ñ i,j (A,A) such that

Ñ i,j (A,A)Ñj,k(A,A) = (PB(A) )ik. (37)

For this gauge fixing prescription, the TDVP equations can
then be rewritten as

Ȧi = Ñ i,j (A,A)Hj (A,A). (38)

B. Geometric construction

As for the evolution produced by S̃H in the full Hilbert
space, one can now define the orthogonal projector onto the
space orthogonal to the uMPS |�(A)〉 as

P̂0(A,A) = 1̂ − |�(A)〉 〈�(A)|
N (A,A)

(39)

and observe that

Ñı,j (A,A) = 〈∂ı�(A)|P̂0(A,A)|∂j�(A)〉
N (A,A)

,

Hı(A,A) = 〈∂ı�(A)|P̂0(A,A)Ĥ |�(A)〉
N (A,A)

.

The TDVP equation [Eq. (31)] can thus be rewritten as

〈∂ı�(A(t))|P̂0(A(t),A(t))|∂j�(A(t))〉 Ȧj (t)

= 〈∂ı�(A(t))|P̂0(A(t),A(t))Ĥ |�(A(t))〉 ,

which is the same solution that is obtained if one tries to
express that Ȧ minimizes the norm of the difference between
both sides of the Schrodinger equation

‖P̂0(A,A)[i |∂j�(A)〉 Ȧj − Ĥ |�(A)〉]‖,
where one only considers the components orthogonal to the
current state |�(A)〉. Note that, as before, this problem does
not have a unique minimum and there are many choices Ȧ

that lead to the same physical state d
dt

|�(A(t))〉. Restricting to
Ȧ ∈ B(A) selects a unique solution. Equivalently, one can just
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minimize ‖i |∂j�(A)〉 Ȧj − Ĥ |�(A)〉 ‖ for all choices Ȧ ∈
B(A), in which case the orthogonality with respect to|�(A)〉
is contained in the parametrization and does not have to be
included explicitly.

We can also define a projector in Hilbert space that projects
onto T|�(A)〉⊥

0 as

P̂T⊥
0

= |∂i�(A)〉 Ñ i,j (A,A) 〈∂j�(A)| . (40)

Note that this projector is in fact independent of the gauge
fixing prescription that was used to define Ñ i,j . One can check
that a sufficient condition such that P̂T⊥

0
acts as a projector is

that Ñ i,j Ñj,kÑ
k,l = Ñ i,l , where we assume that only tangent

vectors |∂k�(A)〉 ⊥ |�(A)〉 are involved and 〈�(A)|�(A)〉 =
1 such that 〈∂j�(A)|∂k�(A)〉 = Nj,k = Ñj,k . The TDVP
equations can now be written in Hilbert space as

i
d

dt
|�(A(t))〉 = P̂T⊥

0
Ĥ |�(A(t))〉 . (41)

C. Symplectic properties of real-time evolution

We now associate to any time-independent operator F̂ ∈
L(H) the function

F : (A,A) �→ 〈�(A)|F̂ |�(A)〉
〈�(A)|�(A)〉 (42)

that maps the coordinates (A,A) of a uMPS |�(A)〉 in the
manifold M to its expectation value. In addition, for any two
functions F (A,A) and G(A,A), we define a Poisson bracket
{F,G} as

{F,G}(A,A) = −i∂iF (A,A)Ñ i,j (A,A)∂jG(A,A)

+ i∂iG(A,A)Ñ i,j (A,A)∂jF (A,A). (43)

We can then write the evolution of the expectation value
O(A(t),A(t)) for a solution A(t) of the TDVP equations as

d

dt
O(A(t),A(t)) = {O,H }(A(t),A(t)). (44)

The generalization for time-dependent operators Ô(t) is
straightforwardly given by

d

dt
O(A(t),A(t),t)

= {O,H }(A(t),A(t),t) + ∂O

∂t
(A(t),A(t),t). (45)

However, we can only really compare this to the symplectic
structure of classical Hamiltonian dynamics if the definition in
Eq. (43) satisfies all properties of the Poisson bracket, not only
the antisymmetry in its arguments but also the Jacobi identity

{F,{G,H }} + {G,{H,F }} + {H,{F,G}} = 0. (46)

Writing out this lengthy equation and doing some index
substitutions, the nontrivial part of this identity that needs
to be checked is whether

FiGkHl(Ñ
i,j ∂j Ñ

k,l − Ñk,j ∂j Ñ
i,l) = 0

together with its cyclic permutations. Let us first explain the
usual derivation, which is not applicable here as we explain

afterwards. If Ñk,l would be a proper inverse of Ñl,m, we could
write

∂j Ñ
k,l = −Ñk,m∂j Ñm,nÑ

n,l

and use ∂j Ñm,n = ∂mÑj,n = ∂j ∂m∂n ln(N ) to show that the
expression inside the brackets is identically zero. However,
because Ñk,l is only a pseudoinverse, we can not use the
previous expression for ∂j Ñ

k,l . In general, the terms in the
round brackets are not zero. It is only when they act on
covariant vectors FiGkHl that originate from functions which
are associated with physical operators and which inherit the
gauge invariance of the uMPS that we can show that that
this expression vanishes. The pseudoinverse Ñ i,j is such
that Hl = Ñl,mÑm,nHn for gauge-invariant functions H . If
we insert this explicitly in the expression above and use
Ñk,lÑl,m = (PB)km [Eq. (37)], we obtain

(∂j Ñ
k,l)Ñl,mÑm,n = −Ñk,l∂j Ñl,mÑm,n + (∂j (PB)km)Ñm,n

and thus

(Ñ i,j ∂j Ñ
k,l − Ñk,j ∂j Ñ

i,l)Ñl,mÑm,n

= −(Ñ i,j Ñ k,l∂j Ñl,m − Ñk,j Ñ i,l∂j Ñl,m)Ñm,n

+ (Ñ i,j ∂j (PB)km − Ñk,j ∂j (PB)im)Ñm,n

= (Ñ i,j ∂j (PB)km − Ñk,j ∂j (PB)im)Ñm,n,

where we have now properly used ∂j Ñm,n = ∂mÑj,n. To
evaluate the remaining expression, we need the derivative of
the projector PB onto the horizontal subspace. Note that for any
vector B, the action of PB on B is to replace it by B + N

(A)
0 (X)

for some X such that B + N
(A)
0 (X) ∈ B. The map N(A)

p depends

only holomorphically on A, and the only dependence on A can
be in the specific X that was used to make the output satisfy
the gauge fixing condition. This implies that for any B, we
obtain

[∂j (PB)km]Bm

= ∂j [(PB)kmBm] = ∂j [Bk + N
(A)k
0 (X)] = N

(A)k
0 (∂jX)

from which we can infer that the range of ∂j (PB)km is always
in the vertical subspace N(A)

0 . The remaining two terms cancel
because Fi∂j (PB)im = 0 and Gk∂j (PB)km = 0. In conclusion,
the Jacobi identity is only satisfied when using gauge-invariant
functions. In that case, we are really working on the physical
manifold M ⊂ H, which unfortunately we only know how to
parametrize globally using the overcomplete parametrization
in terms of the tensor A ∈ A.

Indeed, it was shown in Ref. 20 that the manifold of
uMPS M is a Kähler manifold, which implies that its metric
also defines a symplectic structure, i.e., a real two-form ω =
iÑı,j dzj ∧ dzı that is closed. The fact that it is closed (dω = 0)
relies on ∂kÑı,j = ∂ıÑk,j and thus expresses the essential
property for having the Jacobi identity. We can complete the
relationship between ω and the Poisson bracket by defining
for every (gauge-invariant) function F the Hamiltonian vector
field

XF (A,A) = −iFı(A,A)Ñ ıj (A,A)∂j + iFj (A,A)Ñ ıj (A,A)∂ı

(47)
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and check that

{F,G} = dF (XG) = ω(XF ,XG). (48)

These relations are familiar from classical Hamiltonian me-
chanics, the only less common ingredient being that the most
natural description of phase space is in terms of complex
coordinates.

Under exact integration of the TDVP equations for a time-
independent Hamiltonian, the antisymmetry of the Poisson
bracket results in Ḣ = {H,H } = 0, which implies that the
energy expectation value H (A(t),A(t)) is an exact conserved
quantity of the TDVP equations. The symplectic properties of
the TDVP also conserve other symmetries. Assume that the
Hamiltonian is invariant under the action of a unitary symmetry
operator Û , such that [Ĥ ,Û ] = 0. In order to be able to transfer
this symmetry to the uMPS manifold M, we need to assume
that for any state |�(A)〉 ∈ M, the action of Û is mapped
to a new state |�(AU (A))〉 = Û |�(A)〉 ∈ M. One particular
class of symmetries that fulfill this condition are those for
which the symmetry operators Û decompose into a product
of one-site operators Û = ∏

n∈Z ûn with û site independent.
We then obtain As

U (A) = 〈s|û|t〉 At . Because of the unitarity
of Û , we have N (AU,AU ) = N (A,A), where we omit the
explicit dependence of AU on A for the sake of brevity. By
taking the logarithm, followed by differentiating with respect

to A
ı

and Al , we obtain

∂ıA
j

U Ñj,k(AU,AU )∂lA
k
U = Ñı,l(A,A). (49)

The condition [Ĥ ,Û ] = 0 also allows us to conclude that
H (AU,AU ) = H (A,A), from which we find

∂ıA
j

UHj (AU,AU ) = Hı(A,A). (50)

The (modified) metric and the gradient thus transform covari-
antly under the symmetry transformation and can be used to
transform the TDVP equation [Eq. (31)] into

+i∂ıA
j

U (A(t))Ñj,k[AU (A(t)),AU (A(t)))
d

dt
Ak

U (A(t))

= ∂ıA
j

U (A(t))Hj (AU (A(t)),AU (A(t))].

By using the injectivity of the map AU (A), we can eliminate

the Jacobian ∂ıA
j

U (A) in order to obtain the correct TDVP
equation in terms of the new coordinates AU (t). Hence, it
should be straightforward to implement a symmetry-adapted
version of the TDVP with increased computational efficiency.

Finally, we study the case where the symmetry operator
Û corresponds to a continuous symmetry generated by the
Hermitian generator K̂ ∈ L(H), with [K̂,Ĥ ] = 0. Thus, the
expectation value of the generator K̂ is conserved under
exact evolution. We define a one-parameter family of trans-
formations Û (ε) = exp(iεK̂). Since we require that for every
uMPS |�(A)〉 ∈ M, Û (ε) |�(A)〉 = |�(AU (A,ε))〉 ∈ M, we
can differentiate this defining relation with respect to ε and set
ε = 0 in order to learn

iK̂ |�(A)〉 = ∂Ai
U

∂ε
(A,0) |∂i�(A)〉 . (51)

The action of K̂ on a uMPS |�(A)〉 thus has to be exactly
captured in T|�(A)〉

0 , so that we can write

P̂T⊥
0
K̂ ′ |�(A)〉 = K̂ ′ |�(A)〉 ,

where we have used the definition K̂ ′ = K̂ − K(A,A). We
then obtain

{H,K}(A,A)

= 〈�(A)|Ĥ ′K̂ ′ − K̂ ′Ĥ ′|�(A)〉
〈�(A)|�(A)〉

= 〈�(A)|[Ĥ − H (A,A),K̂ − K(A,A)]|�(A)〉
〈�(A)|�(A)〉 = 0. (52)

Generators of continuous symmetry transformations are thus
constants of motion of the evolution according to the time-
dependent variational principle, provided that the symme-
try transformation can be captured exactly in the uMPS
manifold M.

D. Properties of imaginary-time evolution

The TDVP equation [Eq. (31)] can also be used to simulate
imaginary-time evolution by setting t = −iτ . Stationary solu-
tions of the TDVP equation satisfy Hj (A,A) = 0, where H is
the energy functional that is the central quantity of the time-
independent variational principle (TIVP). Hence, stationary
solutions of both real- or imaginary-time evolution governed
by the TDVP equation correspond to extremal solutions of
the TIVP. But, whereas real-time evolutions do typically
not converge and are thus not required to end up in such
extremal solutions, imaginary-time evolution necessarily has
to converge for τ → ∞ to a solution with Hj (A,A) = 0. The
reason for this is the rate of change of the energy expectation
value given by

d

dτ
H = −2HiÑ

i,jHj � 0, (53)

where we have omitted the arguments (A(τ ),A(τ )) for the
sake of brevity. Hence, the energy expectation value decreases
monotonically under imaginary-time evolution. Note that even
for our infinite-size system, the previous equation makes sense
since H is proportional to the number of sites |Z|, and the
pseudoinverse metric contains a factor |Z|−1.

In the full Hilbert space H, imaginary-time evolution will
converge any random initial state to the exact ground state,
provided that the initial state is not orthogonal to this ground
state. Note that imaginary-time evolution in combination
with the modified Schrödinger equation [Eq. (30)] does not
change the norm of the state. Imaginary-time evolution then
describes a continuous version of steepest descent for a convex
energy function H (�,�) in the convex subspace of constant
norm 〈�|�〉 and thus converges monotonically to the unique
minimum. [The full energy function H (�,�) in the restriction
of H to a convex subspace of constant norm and phase can
have saddle points corresponding to higher eigenstates, but
has a single minimum corresponding to the ground state.]

In the restricted manifold of uMPS, the energy functional
H (A,A) might have many local minima, and there is no
guarantee that the flow of the TDVP converges towards
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the global minimum (which is assumed to provide the best
approximation of the exact ground state). However, if the
uMPS manifold M is able to accurately approximate the exact
imaginary-time evolution, one can hope that the flow inherits
the global minimizing character of the exact imaginary-
time flow and does indeed converge to the global optimum
for most random initial states. Note that imaginary-time
evolution according to the TDVP equation [Eq. (31)] does
not resemble a simple steepest descent in parameter space
since the (pseudoinverse) metric explicitly takes the geometry
of the manifold into account. It would thus be worthwhile
to investigate geometrically covariant formulations of more
advanced optimization methods as discussed in Ref. 41 for
finding a uMPS ground-state approximation.

E. A simple implementation

We now discuss a simple first-order implementation, which
can be considered as an improved version of the algorithm
originally introduced in Ref. 15. More advanced numerical
integration schemes will be discussed elsewhere.40

Let us first discuss how to compute Ñ i,jHj (A,A). For
either choice of the gauge fixing conditions [Eqs. (15)
or (16)], one nonlocal term survives in the expression for
〈	p(B; A)|Ĥ |�(A)〉 [Eq. (34)], which requires the compu-
tation of the pseudoinverse of 1 − E. An exact computation
of (1 − E)P would be an operation that scales as O(D6), but
an iterative strategy is also possible. If we represent B as B(X)
[Eq. (19)], so that the left gauge fixing conditions are fulfilled,
we have to compute

(K| = (l|HAA
AA(1 − E)P = (l|HAA

AAQ(1 − QEQ)−1Q, (54)

where the last Q is obsolete and where (l|HAA
AAQ can be

computed efficiently. Since the action of (1 − QEQ) on a
vector (K| can also be implemented as an operation with
computational efficiency O(D3) using the maps E and Ẽ
[Eqs. (3) and (4)], and since (1 − QEQ) itself is nonsingular,
an iterative solver such as the biconjugate gradient stabilized
method can be used to compute (K| with a computational cost
that scales as O(D3). Setting Cs,t = ∑d

u,v=1 〈s,t |ĥ|u,v〉 AuAv ,
we then also define

F =
d∑

s,t=1

V s
L
†
l1/2Cs,t rAt †r−1/2

+
d∑

s,t=1

V s
L
†
l−1/2At †lCt,sr1/2 +

d∑
s=1

V s
L
†
l−1/2KAsr1/2,

(55)

in order to obtain

〈	p(B(X))|Ĥ |�(A)〉 = 2πδ(p) tr[X†F ]. (56)

The solution to the minimization of ‖|	0(B)〉 − Ĥ |�(A)〉‖2

is then given by B = B(F ).
A simple first-order update scheme is obtained by using

the Euler update rule A(t + dt) = A(t) − i dt B(F ) in case
of real-time evolution or A(τ + dτ ) = A(t) − dτ B(F ). F

is computed using the current state A(t) or A(τ ) and dt

or dτ is the chosen real- or imaginary-time step. This
implementation for uniform matrix product states requires

O(NiterD
3) operations, with Niter the number of iterations

necessary in the iterative eigensolvers for l, r and in the
iterative linear solver for K .

In the case where A(t) also satisfies the left orthonor-
malization condition

∑d
s=1 As(t)†As(t) = 1D , the left gauge

fixing condition for the tangent vector B imposes that this
orthonormalization is preserved up to first order:

∑d
s=1 As(t +

dt)†As(t + dt) = 1D + (dt)2∑d
s=1 Bs†Bs . The terms of order

dt are zero because they correspond exactly to the left-hand
side of the left gauge fixing condition [Eq. (15)] and its
Hermitian conjugate. We can then use an improved update
rule such that A(t + dt) satisfies the left orthonormalization
exactly. We therefore define [A] as a matrix representation
of A with dimension Dd × D, where the physical index
s = 1, . . . ,d and the row index of the matrices As is combined:
[A](αs),β = As

α,β . The left orthonormalization expresses the
isometric character of [A] (i.e., [A]†[A] = 1D). We now state
the alternative update rule for real-time evolution

[A(t + dt)] = exp(−i dt{[B][A(t)]† + [A(t)][B]†})[A(t)]

(57)

or for imaginary-time evolution

[A(t + dt)] = exp(−dτ {[B][A(t)]† − [A(t)][B]†})[A(t)].

(58)

Expanding the exponential to first order and using
[B]†[A(t)] = 0 shows that this update rule is equivalent at
first order in dt . Since the argument of the matrix exponential
is anti-Hermitian, the isometric character of A is exactly
preserved. In case of large local dimension d, it might
be disadvantageous to compute a matrix exponential of a
dD × dD matrix. We can expand the exponential into its
Taylor series and, using the properties of A and B, resum
the series to obtain

As(t + dt) = As(t) cos (dt |B|) + iBs |B|−1 sin (dt |B|) (59)

in case of real-time evolution, or

As(τ + dτ ) = As(τ ) cos (dτ |B|) − Bs |B|−1 sin (dτ |B|) (60)

in case of imaginary-time evolution. In these equations, the
D × D matrix |B| is given by

|B| = (
[B]†[B]

)1/2 =
(

d∑
s=1

Bs†Bs

)1/2

. (61)

Hence, instead of one matrix exponential of a dD × dD

matrix, we have to compute a matrix sine and cosine of a
D × D matrix, which boils down to two matrix exponentials
of this D × D matrix.

F. Error and convergence measures

According to the geometric formulation of the TDVP
[Eq. (41)], we can assess the difference between the TDVP
evolution and the exact evolution as

ε(A,A) = ‖[1̂ − P̂T⊥
0
][Ĥ − H (A,A)]|�(A)〉||

=
√

�H (A,A)2 − η(A,A)2, (62)
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where we have defined the norm of the TDVP evolution vector
as

η(A,A) = ‖P̂T⊥
0
Ĥ |�(A)〉‖ (63)

and the energy deviation as

�H (A,A) = 〈�(A)|(Ĥ − H (A,A))2|�(A)〉1/2
. (64)

For an infinite system, each of these quantities diverges as
|Z|1/2. This is an infinitesimal manifestation of the orthogonal-
ity catastrophe, which for the case of uMPS expresses the fact
that any two injective uMPS that are not gauge equivalent are
necessarily orthogonal. Consequently, even the infinitesimal
variation from |�(A)〉 to |�(A + dA)〉 corresponds to a state
|	(A)

0 (dA)〉 with diverging norm. However, we are mostly
interested in local properties of systems and should thus use
error measures based on regions of finite size. A suitable
length scale for such a region which guarantees good global
properties of the state is given by the correlation length ξ . For
example, for a Hamiltonian Ĥ = ∑

n∈Z T̂ nĥT̂ −n where T̂ is
the shift operator and the local interaction term ĥ only acts on
nearest-neighbor sites, we obtain

�H (A,A)2

= 〈�(A)|
[∑

n∈Z
T̂ n(ĥ − h(A,A))T̂ −n

]2

|�(A)〉

= |Z|
(

1∑
n=−1

〈�(A)|(ĥ − h(A,A))T̂ n(ĥ − h(A,A))|�(A)〉

+ 2(l|EC
AA(1 − E)PEAA

C |r)

)
. (65)

The first term results in

〈�|(ĥ − h)(ĥ − h)|�〉

=
d∑

s,t,u,v=1

〈u,v|(ĥ − h)2|s,t〉 (l|AsAt ⊗ A
u
A

v|r)

= �h(A,A)2

and

〈�|(ĥ − h)T̂ (ĥ − h)|�〉

=
d∑

r,s,t,u,v,w=1

〈u,v,w|(ĥ − h)T̂ (ĥ − h)T̂ −1|r,s,t〉

× (l|ArAsAt ⊗ A
u
A

v
A

w|r),

for n = 0 and 1, respectively, and in the complex conjugate
of the last expression for n = −1. By taking out the diverging
factor |Z|1/2 from �H (A,A), we obtain a local and finite
measure for the energy deviation which is based on the
correlation between any two Hamiltonian terms up to the
correlation length. We similarly define a local measure

η̃(A,A) = |Z|−1/2η(A,A)

= [
(l|EB ′

B |r) + (l|EA
BQ(1 − eipQEQ)−1QEB ′

A |r)

+ (l|EB ′
A Q(1 − e−ipQEQ)−1QEA

B |r)
]
,

where (l|EB
A|r) was assumed. Using the representation B =

B(x) with x = F as constructed in Eq. (55), we obtain

η̃(A,A) =
√

tr[F †F ] = ‖F‖F, (66)

where ‖ . . . ‖F denotes the Frobenius norm. A local measure
for the error made by the TDVP evolution with respect to the
full evolution is then given by

ε̃(A,A) =
√

�H (A,A)2/|Z| − η̃(A,A)2. (67)

When the exact time evolution is accurately captured in the
manifold of (uniform) matrix product states, ε̃ contains the
difference of two terms which are of comparable size. In
addition, the computation of �H (A,A)2/|Z| contains four
terms that can be both positive and negative and can neutralize
each other. This can result in large numerical errors in
the computation of these quantities. A better strategy for
evaluating ε̃(A,A) as a sum of strictly positive terms is
constructed in Sec. VII B.

For imaginary-time evolution, we expect the evolution to
converge to a point |�(A∗)〉 where η̃(A

∗
,A∗) = 0. We can

easily motivate that at any point |�(A(τ ))〉 in the evolution,
η̃(A(τ ),A(τ )) can be used as a local measure for the difference
between the current uMPS and the final state |�(A∗)〉. Indeed,
we can show that the change of the expectation value of an
operator Ô with support on N sites satisfies∣∣∣∣ d

dτ
O(A(τ ),A(τ ))

∣∣∣∣ � c‖Ô‖(2ξ + N + 2)̃η(A(τ ),A(τ )),

where c is some constant and ξ is the correlation length, set
by the second largest eigenvalue of the transfer matrix as in
Eq. (6). One special example is when we look at the expectation
value of the Hamiltonian density ĥ, for which we obtain

d

dτ
h(A(τ ),A(τ )) = −η̃(A(τ ),A(τ ))2.

Thus, the energy density h(A(τ ),A(τ )) converges quadrati-
cally as fast as the local measure for the state error η̃, a result
that parallels the quadratic convergence of the total energy in
the global state error.

Having reached a minimum |�(A∗)〉 of the uMPS manifold
[̃η(A,A) = 0], we can use the local error measure ε̃(A

∗
,A∗) =

�H (A
∗
,A∗)/|Z|1/2 to assess the difference between the

variational optimum and the exact ground state.

IV. VARIATIONAL ANSATZ FOR EXCITATIONS

The DMRG was originally developed for finding ground
states of strongly correlated quantum lattice systems in one
spatial dimension. By applying the variational principle to a
state that is enforced to be orthogonal to previously found
states, low-lying excited states on finite lattices can be found.
Typically, these are not the states that one is interested in. On
the finite lattice with open boundary conditions, the momen-
tum quantum number does not exist. Low-lying excited states
can easily be related to boundary effects and have no relation
to the momentum eigenstates in the bulk of a macroscopic
system. In the thermodynamic limit, the suggested approach
fails since any two states are likely to be orthogonal due to the
orthogonality catastrophe. Even if we were able to construct
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a uMPS approximation for the lowest-lying excited state with
momentum zero, the finite excitation energy would spread out
over an infinite lattice and is undetectable from computing the
expectation value of the energy density. States with a different
energy density as the ground state contain a finite density
(and thus an infinite number) of elementary excitations. On a
more mathematical level, we do not expect the class of matrix
product states in the thermodynamic limit to have the correct
properties for describing elementary excited states since MPS
are normalizable, and excited states with definite momentum
are not.

Two different strategies for solving this problem emerge.
Information about the spectrum of excited states can be
obtained from the pole structure of the Fourier transform
of dynamic correlation functions. Initially, algorithms for
directly evaluating these correlation functions in frequency
domain were developed.26,42–44 But since the development
of the TEBD, time evolution can be approximated so well
that modern state-of-the-art algorithms first compute the time-
dependent correlation function for some finite interval t ∈
[0,T ], and then compute the Fourier transform.45,46 Starting
from a disturbance in the ground state of a large but finite
lattice, the time evolution can be computed for any time T

below which the information of the disturbance has not yet
reached the edges of the lattice. The finite time T results
in a broadening of the spectral function, but by combining
advanced linear prediction techniques to extend T beyond
the computable range with complex statistical machinery
for isolating the location of the poles, a fairly accurate
determination of the dispersion relation of the elementary
excitation in the Heisenberg model was obtained.46 Because
of the (approximately) linear increase of entropy under time
evolution,47,48 very large bond values are required in order
to accurately approximate the time evolution all the way up
to time T . This is in sharp contrast with the observation that
low-lying excited states also satisfy an approximate area law
for the scaling of entanglement entropy. For free-field theories,
power-law corrections to the area law were found when the
field is in a superposition of its ground state and low-lying
excited states.49–51 For large areas, these are negligible and
the area law still holds. An area law was also found for
low-lying excited states in an integrable one-dimensional
lattice model.52 In Ref. 53, an area law is proven for all
low-energy states, not restricted to eigenstates, of short-range
interacting lattice models under some technical conditions,
including a sufficiently rapid decay of connected correlation
functions and an upper bound on the number of low-lying
excitations in a subsystem corresponding to a compact spatial
region.

Given these considerations on the entanglement entropy of
excited states, an alternative strategy is thus to construct a
variational Ansatz that is suited to directly probe the spectrum
of excited states. Nevertheless, variational Ansätze for excited
states based on the matrix product concept have not been very
common. Studying energy-momentum dispersion relations
seems to automatically redirect us to a lattice with periodic
boundary conditions, for which the MPS algorithms are less
efficient, unless one can work in the thermodynamic limit.
However, given the remarks above, a direct construction in the
thermodynamic limit seems far from trivial. The first proposal

for a variational Ansatz for excitations was made by Rommer
and Östlund.3,4 In their seminal work on MPS, they also
suggested to study excitations with momentum p = 2πn/N

on a ring of length N using the Ansatz

|	̃p(x)〉 =
N∑

n=1

eipnT̂ n

d∑
{sn}=1

tr[xAs1As2 . . . AsN ] |s1s2 . . . sN 〉 ,

(68)

which allowed them to get an early estimate of the Haldane gap
in the spin-1 Heisenberg chain. The matrices As are fixed to the
value for which the uniform matrix product state |�(A)〉 (of
finite size N ) best approximates the ground state, and one can
hope that several branches of the energy-momentum spectrum
can be captured by different values of x. The rationale of
this Ansatz is that low-lying excited states can be described
as a momentum superposition of a local disturbance, which
is encoded in the virtual system using the virtual operator
x ∈ L(CD). Using an analytic series expansion in the system
size N , Rommer and Östlund were even able to extrapolate
their results to the thermodynamic limit. A different type
of variational class corresponds to the so-called “projected
entangled multipartite states,” given by the Ansatz54

|ϒp[A]〉 = 1√
N

N∑
n=1

eipnT̂ n

d∑
{sn}=1

tr[As1 (1)As2 (2) . . . AsN (N )]

× |s1s2 . . . sN 〉, (69)

which contains a momentum superposition of the non-
translation-invariant MPS. Here, all matrices As(n) are vari-
ational parameters, and different branches of the spectrum
are obtained by creating mutually orthogonal states at a fixed
momentum p. This specific superposition is expected to be
able to introduce long-range information: writing |ϒ0[A]〉
as a uMPS |�̃(Ã)〉 requires a bond dimension D̃ = ND

if D represents the bond dimension of the matrices As(n).
The computational complexity of this algorithm scales as
O(N2D5), and it is thus restricted to lattices of moderate size
and small values of the bond dimension D. This last aspect
is partially compensated by the higher entanglement that is
allowed in this state.

The idea that low-lying excited states can be regarded
as (momentum superpositions of) local disturbances on the
ground state is of course inspired by the case of quadratic
theories, where creation operators â†(p) can be defined that
create elementary excitations when acting on the ground state.
For elementary excitations, this pointlike structure is often a
good assumption. Bijl, Feynman, and Cohen generalized this
concept by acting on the ground state with general operators
Ô(p), which represent the Fourier transform of some local
operator Ô with compact support, for studying excitations
in liquid helium.55–57 If {Ôα} represents a complete set of
local observables, then the Feynman-Bijl operator Ô can be
expanded as Ô = cαÔα and {cα} can be treated as the set
of variational parameters. This Ansatz was first used in the
context of spin systems by Arovas, Auerbach, and Haldane58

and is then referred to as the single-mode approximation. The
single-mode approximation was first combined with matrix

075133-13



HAEGEMAN, OSBORNE, AND VERSTRAETE PHYSICAL REVIEW B 88, 075133 (2013)

product states in Ref. 59, and generalized to local operators
acting on up to four sites.60

It is now clear that the tangent vectors |	p(B)〉 defined
in Eq. (9) generalize both the construction of Östlund and
Rommer, where the excitation is represented as an operator x

in the virtual space (choose Bs = xAs), and the single-mode
approximation, where the excitation is represented as an
operator Ô in the physical space (choose Bs = 〈s|Ô|t〉 At ).
Feynman-Bijl operators with a larger support of n > 1 sites
are not strictly included in this variational class, but by
transferring information along the virtual space all operators
acting on n ≈ 2 logq D sites are effectively included. We can
even hope that the D left and D right Schmidt vectors throw
away irrelevant information on the nearest sites in favor of
keeping relevant information on sites that are further away.
In the final section of this paper, we will also discuss a
generalized excitation Ansatz where we replace the ground-
state matrices A on a contiguous block of several sites. The
Ansatz |	p(B)〉 was used on a ring of N sites in Ref. 16.
However, the real power of this Ansatz is unleashed by using it
in the thermodynamic limit, where we can hopefully reproduce
the O(D3) scaling that we have grown accustomed to from
DMRG and that was also reproduced in the TDVP calculations.
This of course requires that we can consistently compute the
variational excitation energy directly in the thermodynamic
limit. In Sec. IV A we will illustrate how to compute the
expectation value of the Hamiltonian Ĥ in full detail, using
the same techniques as in the previous section. Being able
to formulate our techniques in the thermodynamic limit also
allows us to describe topologically nontrivial excitations, as is
sketched in Sec. IV B. In one spatial dimension, topologically
nontrivial excitations commonly appear in systems with
discrete symmetry breaking as kinks or domain walls that
interpolate between two ground states with a different value
of the order parameter. This Ansatz includes the topologically
nontrivial analog of the Feynman-Bijl operators, which are
the Mandelstam operators.61 Section IV C also relates our
excitation Ansatz to the TDVP from the previous section.
Finally, by noting that we have a variational estimate not
only for the excitation energies but also for the corresponding
wave functions, we look at dynamical correlation functions in
Sec. IV D.

A. Topologically trivial states

Let Ĥ be a given translation-invariant Hamiltonian on an
infinite lattice, which we assume to contain only nearest-
neighbor interactions for reasons of notational simplicity:
Ĥ = ∑

n∈Z T̂ nĥT̂ −n with T̂ the shift operator. We assume
that the ground state is well approximated by a uMPS
|�(A)〉 ∈ M. We henceforth assume that A is the value of
at least a local, and hopefully the global, minimum. We again
assume that the uMPS |�(A)〉 is pure (A ∈ A) and normalized
to unity, so that E has a unique eigenvalue 1 and all the
other eigenvalues lie strictly within the unit circle. We now
apply the time-independent variational principle to the set of
states |	(A)

p (B)〉 ∈ T|�(A)〉
p . Since we are interested in excited

states, we need to impose orthogonality to the ground-state
approximation |�(A)〉. We can thus restrict to T|�(A)〉⊥. As
in the case of TDVP, this restriction enters naturally. We can

thus recycle the parametrization B = B(A)(X) from Eq. (19)
in terms of the D(d − 1) × D matrix X. With A assumed
to be fixed throughout this section, we omit the explicit
reference to A and |�(A)〉 in the notation of the states
|	p(B)〉, the spaces T⊥

p , and the representation B(X). Since
our variational manifold for excitations corresponds to a linear
subspace T⊥

p of Hilbert space H, for which we have a linear
representation through the series of linear maps X �→ B(X) �→
|	(B(X))〉, the variational optimization problem reduces to a
Rayleigh-Ritz problem and we will have to solve a generalized
eigenvalue equation in X. In fact, because of the way the
representation B(X) was constructed, the effective norm
matrix constructed in Eq. (20) is proportional to the unit matrix
and we end up with normal eigenvalue problem.

Two remarks are in order. First, the Ansatz states |	p(B)〉
are momentum eigenstates in an infinite volume and can thus
not be normalized to unity. Second, unlike for the ground
state, we can not restrict to an evaluation of the energy density
expectation value. As explained in the Introduction, the finite
excitation energy in a momentum eigenstate is spread out over
the complete lattice, and the energy density

〈	p(B)|ĥ|	p′(B ′)〉
〈	p(B)|	p′(B ′)〉

is indistinguishable from its ground-state value h(A,A) =
〈�(A)|ĥ|�(A)〉. We thus have to evaluate the expectation
value of the full Hamiltonian 〈	p(B)|Ĥ |	p′(B ′)〉, where
the excitation energy is present as a finite shift [times
the infinite normalization 〈	p(B)|ĥ|	p′(B ′)〉] above a di-
vergent contribution from the extensive ground-state en-
ergy H (A,A) = |Z|h(A,A) [times the infinite normalization
〈	p(B)|ĥ|	p′(B ′)〉]. Subtracting this ground-state energy can
quickly become a source of errors, as we have to subtract
precisely |Z| times the ground-state energy density, and
counting errors are easily made. The safest strategy is to
subtract H (A,A) from Ĥ from the beginning. Note that,
unlike in the evaluation of 〈	p(B)|Ĥ |�(A)〉 that was required
for the TDVP, the ground-state energy contribution is not
automatically subtracted by restricting to tangent vectors
|	p(B)〉 that are orthogonal to |�(A)〉. We thus redefine
ĥ ← ĥ − h(A,A), where h(A,A) = (l|HAA

AA|r) [see Eq. (29)].
With this newly defined ĥ, we obtain (l|HAA

AA|r) = 0.
We are now ready to evaluate the effective Hamiltonian

appearing in the Rayleigh-Ritz equation. It corresponds to
the restriction of the full Hamiltonian to the subspace T⊥

p .

Expanding 〈	p(B)|Ĥ |	p′(B ′)〉 is a lot more involved than
either the norm 〈	p(B)|	p′(B ′)〉 or the TDVP gradient
〈	p(B)|Ĥ |�(A)〉, as we now have to deal with three infinite
sums. The three summation indices indicate the position of B,
B ′, and the first site acted upon by ĥ. In-between these three
positions are transfer matrices E, which can be decomposed
into connected contributions coming from QEQ and discon-
nected contributions coming from S = |r)(l|. Thanks to the
redefinition of the Hamiltonian terms ĥ, we obtain (l|HAA

AAS =
0 and SHAA

AA|r) = 0 and no disconnected contributions coming
from HAA

AA can arise. The connected contributions yield finite
results, and we are free to introduce substitutions of the
summation indices. Disconnected contributions coming from
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EA
B and EB ′

A might give rise to additional divergences and should be treated carefully. The total expression is of the general format

〈	p(B)|Ĥ |	p′(B ′)〉 =
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
n0=−∞

eip′n′−ipn[B at site n,B ′ at site n′, and ĥ on sites n0 and n0 + 1].

We first focus on the terms where everything is connected, thus where all transfer operators have been replaced by their
corresponding regularized version QEQ. We can now safely introduce the substitution n′ ← nc, n ← nc + �n, and n0 ←
nc + �n0. The summation over nc immediately yields the momentum-conserving factor 2πδ(p′ − p) since the terms within the
summation are independent of the global position nc. If we change �n to n and �n0 to n0 for notational simplicity and omit the
overall factor 2πδ(p′ − p), we are left with

(l|HB ′A
BA |r) + (l|HAB ′

AB |r) +
+∞∑
n0=1

(l|EB ′
B QEn0−1QHAA

AA|r) +
−2∑

n0=−∞
(l|HAA

AAQE−n0−2QEB ′
B |r)

+
−1∑

n=−∞
e−ipn

[
θ (n = −1)(l|HAB ′

BA |r) + (l|EA
BQEn−1QHB ′A

AA |r) + (l|HAA
ABQE−n−1QEB ′

A |r)

+ θ (n < −1)(l|EA
BQE−n−2QHAB ′

AA |r) + θ (n < −1)(l|HAA
BAQE−n−2QEB ′

A |r)

+
+∞∑
n0=1

(l|EA
BQE−n−1QEB ′

A QEn0−1QHAA
AA|r) +

n−2∑
n0=−∞

(l|HAA
AAQE−n0+n−2QEA

BQE−n−1QEB ′
A |r)

+ θ (n < −2)
−2∑

n0=n+1

(l|EA
BQE−n+n0−1QHAA

AAQE−n0−2QEB ′
A |r)

]
+

+∞∑
n=1

e−ipn
[
θ (n = 1)(l|HB ′A

AB |r) + (l|EB ′
A QEn−1QHAA

BA|r) + (l|HAB ′
AA QEn−1QEA

B |r)

+ θ (n > 1)(l|EB ′
A QEn−2QHAA

AB |r) + θ (n > 1)(l|HB ′A
AA QEn−2QEA

B |r)

+
+∞∑

n0=n+1

(l|EB ′
A QEn−1QEA

BQEn0−n−1QHAA
AA|r) +

−2∑
n0=−∞

(l|HAA
AAQE−n0−2QEB ′

A QE−n−1QEA
B |r)

+ θ (n > 2)
n−2∑
n0=1

(l|EB ′
A QEn0−1QHAA

AAQEn−n0−2QEA
B |r)

]
.

The terms on the first line correspond to n = 0, i.e., where B and B ′ are on the same site. Then, we have all the terms corresponding
to n < 0 and all the terms corresponding to n > 0. For most terms, we can immediately evaluate the geometric series for n0,
followed by an evaluation of the additional geometric series in n for some terms. The only exception are the terms with θ (n < −2)
and θ (n > 2), where it is better to first switch the two sums and express the summation bounds of n in terms of n0. Then, we first
evaluate the geometric series in n, followed by the one in n0. We obtain

(l|HB ′A
BA |r) + (l|HAB ′

AB |r) + e+ip(l|HAB ′
BA |r) + e−ip(l|HB ′A

AB |r) + (l|EB ′
B (1 − E)PHAA

AA|r) + (l|HAA
AA(1 − E)PEB ′

B |r)

+ e+ip(l|EA
B(1 − e+ipE)PEB ′

A (1 − E)PHAA
AA|r) + e−ip(l|EB ′

A (1 − e−ipE)PEA
B(1 − E)PHAA

AA|r)

+ e+ip(l|HAA
AA(1 − E)PEA

B(1 − e+ipE)PEB ′
A |r) + e−ip(l|HAA

AA(1 − E)PEB ′
A (1 − e−ipE)PEA

B |r)

+ e+ip(l|EA
B(1 − e+ipE)PHB ′A

AA |r) + e−ip(l|EB ′
A (1 − e−ipE)PHAA

BA|r)

+ e+ip(l|HAA
AB(1 − e+ipE)PEB ′

A |r) + e−ip(l|HAB ′
AA (1 − e−ipE)PEA

B |r)

+ e+2ip(l|EA
B(1 − e+ipE)PHAB ′

AA |r) + e−2ip(l|EB ′
A (1 − e−ipE)PHAA

AB |r)

+ e+2ip(l|HAA
BA(1 − e+ipE)PEB ′

A |r) + e−2ip(l|HB ′A
AA (1 − e−ipE)PEA

B |r)

+ e+3ip(l|EA
B(1 − e+ipE)PHAA

AA(1 − e+ipE)PEB ′
A |r) + e−3ip(l|EB ′

A (1 − e−ipE)PHAA
AA(1 − e−ipE)PEA

B |r).

The symbolic notation (1̂ − e±ipE)P = Q(1 − e±ipQEQ)−1Q was introduced in the previous section. Only for p = 0 is this
truly a pseudoinverse. For p �= 0, the 1̂ − e±ipE is not really singular. Nevertheless, we had to separate the eigenvalue e±ip with
modulus 1 from the operator e±ipE in order to use the formula for the geometric series.

We now consider the contributions resulting from disconnecting either B or B ′. They can not be simultaneously disconnected
since this would also imply that ĥ is disconnected, which we have excluded above. Whenever B ′ appears on the complete
left (right) side of a term, and is separated from the rest by a transfer operator E, there is such a disconnected contribution.
We assume that we can still make the substitution to the global position nc and the relative positions n and n0. Only making
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substitutions that changes the value of finite bounds in the sum result in a possibility of miscounting contributions and making
errors. The summation over the global position again yields the momentum conservation. The total (left and right) contribution
from disconnecting B is given by [omitting the momentum-conserving factor 2πδ(p′ − p)]

(l|EA
B |r)

[
(l|HB ′A

AA |r)

( −1∑
n=−∞

e−ipn +
+∞∑
n=2

e−ipn

)
+ (l|HAB ′

AA |r)

( −2∑
n=−∞

e−ipn +
+∞∑
n=1

e−ipn

)

+
−1∑

n=−∞
e−ipn

+∞∑
n0=1

(l|EB ′
A QEn0−1QHAA

AA|r) +
+∞∑
n=3

e−ipn

n−2∑
n0=1

(l|EB ′
A QEn0−1QHAA

AA|r)

+
−3∑

n=−∞
e−ipn

−2∑
n0=n+1

(l|HAA
AAQE−n0−2QEB ′

A |r) +
+∞∑
n=1

e−ipn

−2∑
n0=−∞

(l|HAA
AAQE−n0−2QEB ′

A |r)

⎤⎦ .

These terms should be treated carefully. We expect them to generate a divergence at p = 0 through a 2πδ(p) since we have not
expressed orthogonality with respect to the ground state yet. But, for any other p �= 0, they should be finite, as orthogonality to
the ground state is automatic. By inserting the result for the finite geometric sums in n0, we obtain for the terms between the
square brackets

(l|HB ′A
AA |r)

(
2πδ(p) − 1 − e−ip

)+ (l|HAB ′
AA |r)

(
2πδ(p) − 1 − e+ip

)+
−1∑

n=−∞
e−ipn(l|EB ′

A (1 − E)PHAA
AA|r)

+
+∞∑
n=3

e−ipn(l|EB ′
A (1 − E)P(Q − QEn−2Q)HAA

AA|r) +
−3∑

n=−∞
e−ipn(l|HAA

AA(1 − E)P(Q − QE−n−2Q)EB ′
A |r)

+
+∞∑
n=1

e−ipn(l|HAA
AA(1 − E)PEB ′

A |r).

Since (1 − E)PQ = (1 − E)P, we can now group the third and fourth terms, as well as the fifth and sixth terms, and complete
the sums in n to

∑+∞
n=−∞ e±ip = 2πδ(p), in order to obtain

(l|HB ′A
AA |r)(2πδ(p) − 1 − e−ip) + (l|HAB ′

AA |r)(2πδ(p) − 1 − e+ip) + (2πδ(p) − 1 − e−ip − e−2ip)(l|EB ′
A (1 − E)PHAA

AA|r)

−
+∞∑
n=3

e−ipn(l|EB ′
A (1 − E)PQEn−2QHAA

AA|r) + (2πδ(p) − 1 − e+ip − e+2ip)(l|HAA
AA(1 − E)PEB ′

A |r)

−
−3∑

n=−∞
e−ipn(l|HAA

AA(1 − E)PQE−n−2QEB ′
A |r).

Finally, we have to compute two converging geometric series in n. Note that the power of (QEQ) starts at one instead of zero
(for n = 3 on line 2 and for n = −3 on line 3). We can absorb the part with factor e−2ip from the last term of the first line, and
the part with factor e+2ip from the last term of the second line, respectively, in order to have a geometric series in (QEQ) starting
at power zero. We hence obtain for the total disconnected contribution of B:

(l|EA
B |r)

[
(l|HB ′A

AA |r)(2πδ(p) − 1 − e−ip) + (l|HAB ′
AA |r)(2πδ(p) − 1 − e+ip) + (2πδ(p) − 1 − e−ip)(l|EB ′

A (1 − E)PHAA
AA|r)

−e−i2p(l|EB ′
A (1 − E)P(1 − e−ipE)PHAA

AA|r) + (2πδ(p) − 1 − e+ip)(l|HAA
AA(1 − E)PEB ′

A |r)

−e+i2p(l|HAA
AA(1 − E)P(1 − e+ipE)PEB ′

A |r)
]
.

By adding a similar result from disconnecting B ′, we obtain the final result

〈	p(B)|Ĥ |	p′ (B ′)〉
= B

ı
Hi,j (p,p′)Bj = 2πδ(p′ − p)Hı,j (p)2πδ(p − p′)

{
(l|HB ′A

BA |r) + (l|HAB ′
AB |r) + e+ip(l|HAB ′

BA |r) + e−ip(l|HB ′A
AB |r)

+ (l|EB ′
B (1 − E)PHAA

AA|r) + (l|HAA
AA(1 − E)PEB ′

B |r) + e+ip(l|EA
B(1 − e+ipE)PEB ′

A (1 − E)PHAA
AA|r)

+ e−ip(l|EB ′
A (1 − e−ipE)PEA

B(1 − E)PHAA
AA|r) + e+ip(l|HAA

AA(1 − E)PEA
B(1 − e+ipE)PEB ′

A |r)

+ e−ip(l|HAA
AA(1 − E)PEB ′

A (1 − e−ipE)PEA
B |r) + e+ip(l|EA

B(1 − e+ipE)PHB ′A
AA |r) + e−ip(l|EB ′

A (1 − e−ipE)PHAA
BA|r)

+ e+2ip(l|EA
B(1 − e+ipE)PHAB ′

AA |r) + e−2ip(l|EB ′
A (1 − e−ipE)PHAA

AB |r) + e+ip(l|HAA
AB(1 − e+ipE)PEB ′

A |r)

+ e−ip(l|HAB ′
AA (1 − e−ipE)PEA

B |r) + e+2ip(l|HAA
BA(1 − e+ipE)PEB ′

A |r) + e−2ip(l|HB ′A
AA (1 − e−ipE)PEA

B |r)

+ e+3ip(l|EA
B(1 − e+ipE)PHAA

AA(1 − e+ipE)PEB ′
A |r) + e−3ip(l|EB ′

A (1 − e−ipE)PHAA
AA(1 − e−ipE)PEA

B |r)
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× (l|EA
B |r)

[
(2πδ(p) − 1 − e−ip)

(
(l|HB ′A

AA |r) + (l|EB ′
A (1 − E)PHAA

AA|r)
)+ (

2πδ(p) − 1 − e+ip
)(

(l|HAB ′
AA |r)

+ (l|HAA
AA(1 − E)PEB ′

A |r)
)− e−i2p(l|EB ′

A (1 − E)P(1 − e−ipE)PHAA
AA|r) − e+i2p(l|HAA

AA(1 − E)P

× (1 − e+ipE)PEB ′
A |r)

]
(l|EB ′

A |r)
[(

2πδ(p) − 1 − e+ip
)(

(l|HAA
BA|r) + (l|EA

B(1 − E)PHAA
AA|r)

)
+ (2πδ(p) − 1 − e−ip)

(
(l|HAA

AB |r) + (l|HAA
AA(1 − E)PEA

B |r)
)

− e+i2p(l|EA
B(1 − E)P(1 − e+ipE)PHAA

AA|r) − e−i2p(l|HAA
AA(1 − E)P(1 − e−ipE)PEA

B |r)
]}

. (70)

This equation defines the effective Hamiltonian Hı,j (p,p′).
As expected, because of the translation invariance of Ĥ , the
δ normalizing factor is obtained. The remaining part of the
Hamiltonian has been defined as Hı,j (p), similarly to how
the normalization matrices Nı,j (p,p′) = 2πδ(p − p′)Nı,j (p)
were defined in Eq. (13).

For momentum zero, the additional divergences δ(p)
in Hı,j (p) signal the need for imposing (l|EA

B |r) = 0 and
(l|EB ′

A |r) = 0, which boils down to restricting to tangent
vectors |	0(B)〉 , |	0(B ′)〉 ∈ T⊥

0 . For other momenta, there
is no need to impose these conditions and these terms (i.e.,
the terms in the square brackets) are finite. However, thanks to
the gauge freedom we can still impose this condition, and
even the more general right or left gauge fixing conditions in
Eq. (15) or (16), respectively. The terms in the square brackets
then all disappear, together with some additional terms (among
which the terms with prefactor e±i3p) on the upper lines.
Equation (70) can thus be simplified by a proper choice of
the gauge fixing conditions on B.

In particular, by using the representation B = B(X), the
norm matrix for the new variables becomes the identity
[Eq. (20)] and we simply have to diagonalize the sum of
the remaining terms in the effective Hamiltonian. Since the
effective parametrization X has (d − 1)D2 components, a
complete diagonalization has a computational cost O(D6) and
is only feasible for low values of D. Since we are mostly
interested in the lowest eigenvalues, which correspond to
elementary excitations, we can apply an iterative eigensolver.
We have already explained how to efficiently compute the
gradient Hı in Sec. III E. An efficient implementation of the
matrix vector product Hı,jB

j is a bit more complicated but
also possible. Note that we need to iteratively determine the
action of the D2 × D2 operators (1 − E)P and (1 − e±ipE)P

on a D2-dimensional vector. An algorithm for efficiently
determining the pseudoinverse (1 − E)P was also sketched in
the previous section and is equally applicable to (1 − e±ipE)P.

B. Topologically nontrivial states

In a system with discrete symmetry breaking, elementary
excitations are often of a topologically nontrivial nature. They
appear as domain walls or kinks separating two different
ground states at +∞ and −∞. These states are protected from
decay into the ground state (or into any other topologically
trivial state), as there is an infinitely high energy barrier
to tunnel from one ground state into another in a half-
infinite region of space.62 Let |�(A)〉 ∈ M and |�(Ã)〉 ∈ M
represent two uMPS with bond dimensions D and D̃ that
approximate two different instances from the ground-state
subspace of Ĥ . Note that we still require these uMPS to be

pure, which implies that their connected correlation functions
are exponentially decaying to zero. This indicates that they are
special instances from the ground-state subspace. If Ô is the
local order parameter corresponding to the broken symmetry,
it is possible to create a symmetric ground state which does not
have the exponential clustering property since 〈O〉 = 0 while
limn→∞ 〈ÔT̂ nÔT̂ −n〉 �= 0. Such a state can only be approx-
imated by a linear combination of several pure MPS, which
are each individually good ground-state approximations.63 The
pure MPS |�(A)〉 and |�(Ã)〉 will always show the symmetry
breaking locally [i.e., 〈�(A)|Ô|�(A)〉 �= 0].

We now have two transfer operators EA
A and EÃ

Ã
, each of

which has a unique eigenvalue 1, and we define the corre-
sponding left and right eigenvectors as (l|, |r) and (l̃|, |r̃), re-
spectively. If the symmetry transformations Ûg corresponding
to every element g from the symmetry group can be written as
a product of one-site transformations Ûg = ∏

n∈Z T̂ nûgT̂
−n,

then we can probably choose Ãs = ∑d
t=1 〈s|ûg|t〉 At for some

g ∈ G, so that D̃ = D and EÃ
Ã

= EA
A, and thus also l̃ = l and

r̃ = r . We allow for the more general case as well. However,
the fact that |�(A)〉 and |�(A′)〉 are inequivalent (i.e., that
there really is symmetry breaking and that they are not just the
same state) implies that ρ(EA

Ã
) < 1.

An Ansatz for approximating the topologically nontrivial
state with momentum p that asymptotically looks like |�(A)〉
at −∞ and like |�(Ã)〉 at +∞ (i.e., a kink or domain wall) is
given by

|	̃p(B; A; Ã)〉

=
∑
n∈Z

eipn

d∑
{sn}=1

v
†
L

[(∏
m<n

Asm

)
Bsn

(∏
m′>n

Ãsm′

)]
vR |s〉 ,

(71)

with Bs a set of D × D̃ matrices (∀ s = 1, . . . ,d). We now
impose (v†

LrvL)(v†
R l̃vR) = 1 so as not to be troubled by the

boundary vectors when computing expectation values. In order
for this state to have a finite excitation energy, we need to

impose h(A,A) = h(Ã,Ã), so that both uMPS approximate
their respective ground state equally well. As for the Ansatz
for topologically nontrivial excitations, the rationale behind the
Ansatz in Eq. (71) is that the kink itself is a highly localized
or pointlike object that is in a momentum superposition. It
is not completely restricted to live on a single site since it
can spread out along the virtual dimension, and has nontrivial
support over at least logd D + logd D̃ sites. Creating a kink
through the action of a physical operator, analogously to the
Feynman-Bijl operator, was first attempted by Mandelstam61

in the context of relativistic quantum field theories. Translated
to the lattice case, he proposed to use as operator the Fourier
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transform of

Ô(n) = ôn

∏
m>n

ûn, (72)

with ôn a completely local operator on site n and
∏

m>n ûn a
string of operators that has the effect to transform the ground
state to another ground state for m > n, i.e., in our context
ûn = T̂ nûgT̂

−n.
The states |	̃p(B; A,Ã)〉 share many properties with

the tangent vectors |	p(B,A)〉. Using ρ(EA
Ã

) < 1 even al-

lows for some simplifications. First, 〈�(A)|	̃p(B; A,Ã)〉 =
〈�(Ã)|	̃p(B; A,Ã)〉 = 0 for all values of the momentum p,
including p = 0, so that orthogonality with respect to the
ground state is automatic and no divergent terms are to be
expected. The reason is the appearance of factors EA

Ã
in a

half-infinite space. Second, the linear map

	̃(A,Ã)
p : CD×d×D̃ �→ H : B �→ |	̃(A,Ã)

p (B)〉 = |	̃p(B; A,Ã)〉
(73)

has a nontrivial null space Ñ
(A,Ã)
p . Indeed, it can easily be

checked that the map

Ñ
(A,Ã)
p : CD×D̃ �→ Ñ

(A,Ã)
p : x �→ N(A,Ã)

p (x) with

×N(A,Ã)s
p (x) = Asx − e−ipxÃs,∀ s = 1, . . . ,d (74)

defines a set of choices B = Ñp(x) that produce |	̃p(B)〉 = 0.
We henceforth omit the explicit notation of A and Ã. It is
easy to see that the null space of Ñp itself is empty ∀ p,
including p = 0, since Ñ

s

p(x) = 0 (∀ s = 1, . . . ,d) requires
that EA

Ã
|xr̃) = e−ip|xr̃). But, since ρ(EA

Ã
) < 1, this equation

can have no solution. If we define

T̃p = {|	̃p(B)〉 | B ∈ CD×d×D̃}, (75)

then we obtain dim T̃p = dimCD×d×D̃ − dim Ñp = (d −
1)DD̃, ∀ p ∈ [−π, + π ). To fix the additive gauge freedom in
the parametrization B, we restrict to parametrizations B in the

a horizontal subspace B̃
(A,Ã)

, which is defined as the solution
space of either of the following conditions:

(i) left gauge fixing condition:

(l|EB
A = 0 ⇔

d∑
s=1

As†lBs = 0, (76)

(ii) right gauge fixing condition:

EB
Ã
|r̃) = 0 ⇔

d∑
s=1

Bsr̃Ãs† = 0. (77)

Either of these two conditions impose in total DD̃ lin-
early independent equations that completely fix the gauge
freedom in x. A linear parametrization satisfying, e.g., the
left gauge fixing condition can easily be obtained as B̃

s
(X̃) =

l−1/2V s
LX̃r̃−1/2, where X̃ ∈ C(d−1)D×D̃ and VL was constructed

in the context of Eq. (19).
Applying the time-independent variational principle to

T̃p also boils down to solving a Rayleigh-Ritz problem.
We first compute the overlap 〈	̃p(B)|	̃p′(B ′)〉. Since the
superoperators EA

Ã
and EÃ

A that appear between B and B ′
have a spectral radius smaller than one, they do not need
“regularizing” and we can not have disconnected contributions
at all. There is then also no need to introduce pseudoinverses.
We simply obtain

〈	̃p(B)|	̃p′(B ′)〉
= 2πδ(p′ − p)

[
(l|EB ′

B |r̃) + (l|EA
B

(
1 − e+ipEA

Ã

)−1
EB ′

A |r̃)

+ (l|EB ′
A (1 − e−ipEÃ

A)−1EA
B |r̃)

]
. (78)

Similarly, all disconnected contributions that were present in
〈	p(B)|Ĥ |	p′(B ′)〉 [terms in square brackets in Eq. (70)]
disappear in the evaluation of 〈	̃p(B)|Ĥ |	̃p′(B ′)〉. If we also

redefine ĥ ← ĥ − h(A,A) = ĥ − h(Ã,Ã), so that the correct
ground-state energy is subtracted and there are no disconnected
contributions from ĥ either, we immediately obtain

〈	̃p(B)|Ĥ |	̃p′(B ′)〉 = 2πδ(p′ − p)

×[(l|HB ′Ã
BÃ

|r̃) + (l|HAB ′
AB |r̃) + e+ip(l|HAB ′

BÃ
|r̃) + e−ip(l|HB ′Ã

AB |r̃) + (l|EB ′
B

(
1 − EÃ

Ã

)P
HÃÃ

ÃÃ
|r̃) + (l|HAA

AA

(
1 − EA

A

)P
EB ′

B |r̃)

+ e+ip(l|EA
B

(
1 − e+ipEA

Ã

)−1
EB ′

Ã

(
1 − EÃ

Ã

)P
HÃÃ

ÃÃ
|r̃) + e−ip(l|EB ′

A

(
1 − e−ipEÃ

A

)−1
EÃ

B

(
1 − EÃ

Ã

)P
HÃÃ

ÃÃ
|r̃)

+e+ip(l|HAA
AA

(
1 − EA

A

)P
EA

B

(
1 − e+ipEA

Ã

)−1
EB ′

Ã
|r̃) + e−ip(l|HAA

AA

(
1 − EA

A

)P
EB ′

A

(
1 − e−ipEÃ

A

)−1
EÃ

B |r̃)

+e+ip(l|EA
B

(
1 − e+ipEA

Ã

)−1
HB ′Ã

ÃÃ
|r̃) + e−ip(l|EB ′

A

(
1 − e−ipEÃ

A

)−1
HÃÃ

BÃ
|r̃) + e+ip(l|HAA

AB

(
1 − e+ipEA

Ã

)−1
EB ′

Ã
|r̃)

+e−ip(l|HAB ′
AA

(
1 − e−ipEÃ

A

)−1
EÃ

B |r̃) + e+2ip(l|EA
B

(
1 − e+ipEA

Ã

)−1
HAB ′

ÃÃ
|r̃) + e−2ip(l|EB ′

A

(
1 − e−ipEÃ

A

)−1
HÃÃ

AB |r̃)

+e+2ip(l|HAA
BÃ

(
1 − e+ipEA

Ã

)−1
EB ′

Ã
|r̃) + e−2ip(l|HB ′Ã

AA

(
1 − e−ipEÃ

A

)−1
EÃ

B |r̃)

+e+3ip(l|EA
B

(
1 − e+ipEA

Ã

)−1
HAA

ÃÃ

(
1 − e+ipEA

Ã

)−1
EB ′

Ã
|r̃) + e−3ip(l|EB ′

A

(
1 − e−ipEÃ

A

)−1
HÃÃ

AA

(
1 − e−ipEÃ

A

)−1
EÃ

B |r̃)
]
.

(79)

By imposing either the left or the right gauge fixing conditions
of Eq. (76) or (77), many terms in Eqs. (78) and (79) cancel.
In particular, using the representation B = B̃(X̃), the effective

norm matrix becomes

〈	̃p(B̃(X̃))|	̃p′ (B̃(X̃′))〉 = 2πδ(p′ − p) tr[X̃†X̃′].
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As for the topologically trivial excitation Ansatz, the final prob-
lem boils down to finding eigenvalues of a normal eigenvalue
problem and can be solved using in iterative eigensolver with
a computation complexity that scales as O(D3).

One final remark is in order. With two matrices A and
Ã present in the Ansatz for topologically nontrivial states
|	̃p(B; A; Ã)〉, both of which can be defined independently
from each other, there is some ambiguity present in the defini-
tion of the momentum. Suppose we have A′ = eiϕA. We ob-
tain |	̃p(B; A′; Ã)〉 = |	̃p(B; eiϕA; Ã)〉 ∼ |	̃p+ϕ(B; A; Ã)〉,
where the similarity sign means the two states are equal up to
a global phase. This follows simply from inserting A′ in, e.g.,
Eq. (79). It is ultimately related to the fact that topologically
nontrivial excitations can only be defined on systems with
open boundary conditions, where momentum is not a good
quantum number to start with. This problem did not occur in
the Ansatz for topologically trivial excitations because |�p(B)〉
can be defined starting from a finite lattice with periodic
boundary conditions, where p is a good quantum number. In
systems with periodic boundary conditions, only pairs of kinks
(|�p1 (B1; A,Ã)〉) and antikinks (|�p2 (B2; Ã,A)〉) with total
momentum p1 + p2 can exist, and the momentum ambiguity
is resolved since for A ← eiφA we obtain p1 ← p1 − φ

and p2 ← p2 + φ. Nevertheless, it is often useful to study
topologically nontrivial excitations as isolated elementary
excitations. Since the momentum is tightly connected to EA

Ã

in the sense that they appear together as eipEA
Ã

in Eq. (79),
it makes sense to fix the freedom in the definition of the
momentum quantum number by requiring that the relative
phase of A and Ã is chosen so that the eigenvalue with largest
modulus of EA

Ã
is positive.

C. Relation to the time-dependent variational principle

The Ansatz for studying excitations starts from an optimal
uMPS approximation |�(A)〉 of the ground state. Thus, A is an
optimum of the time-independent variational principle for the
ground-state problem in M. Consequently, it is also a station-

ary solution of the TDVP equations for the uMPS manifold
M, since Hj (A,A) = 0, or thus, for any |	0(B)〉 ⊥ |�(A)〉,
〈	0(B)|Ĥ |�(A)〉 = 0. Translation invariance also dictates
that 〈	p(B)|Ĥ |�(A)〉 = 0, so that |�(A)〉 is also stable
against all non-translation-invariant first-order variations.

We can now investigate small perturbations around the
stationary and uniform solution A. Note that we have only
derived the TDVP equation for the manifold of translation-
invariant MPS. The generalization to MPS with site-dependent
tensors A(n) is straightforward. We introduce the notation
|�[A]〉, where the square brackets denote the dependence on
an infinite set of tensors A = {A(n)}n∈Z. The corresponding
energy is given by H [A,A] = 〈�[A]|Ĥ |�[A]〉, where the
state is assumed to be normalized to 〈�[A]|�[A]〉 = 1. We
also use a big index I = (n,i) = [n,(α,β,s)] as a collective
index containing also the site index, such that AI = As

α,β (n),
and let ∂I denote the partial derivative with respect to AI . The
generalized TDVP equation then reads as

〈∂I�[A(t)]|∂J �[A(t)]〉 Ȧ
J

(t)

= 〈∂I�[A(t)]|Ĥ − H [A(t),A(t)]|�[A(t)]〉 . (80)

For small perturbations A(t) = A0 + ε B(t), where A0 denotes
the uniform solution {A}n∈Z and B(t) = {B(n,t)}n∈Z, we can
linearize the TDVP equation as

〈∂I�[A0]|∂J �[A0]〉 Ḃ
J

(t)

= 〈∂I�[A0]|Ĥ − H [A0,A0]|∂J �[A0]〉 BJ (t)

+ 〈∂I ∂J �[A0]|Ĥ − H [A0,A0]|�[A0]〉 B
J

(t). (81)

More generally, the right-hand side should read as

∂I ∂J H [A0,A0]BJ + ∂I ∂J H [A0,A0]B
J

. However, using the
fact that first-order derivatives of H at A0 are zero due
to stationarity, and that we are only considering variations
orthogonal to the original state, only the terms above survive.
Note that we had to introduce a second-order derivative
|∂I ∂J �[A0]〉 in the right-hand side. For B1 = {B1(n)}n∈Z and
B2 = {B2(n)}n∈Z, we now introduce the general notation

|ϒ (A)[B1,B2]〉 = BI
1 BJ

2 |∂I ∂J �[A0]〉 =
∑

m,n∈Z
Bi

1(m)Bj

2 (n)
∂2

∂Ai(m)∂Aj (n)
|�[A]〉

∣∣∣∣
A=A0

=
∑

m<n∈Z

d∑
{sn}=1

v
†
L

[(∏
k<m

Ask

)
B

sm

1 (m)

( ∏
m<k′<n

Ask′

)
B

sn

2 (n)

(∏
n<k′′

Ask′′

)]
vR |s〉

+
∑

m>n∈Z

d∑
{sn}=1

v
†
L

[(∏
k<w

Ask

)
B

sn

2 (n)

( ∏
n<k′<m

Ask′

)
B

sm

1 (m)

(∏
n<k′′

Ask′′

)]
vR |s〉 . (82)

These states span the double tangent space T(2) of the MPS manifold. They were already introduced in Ref. 20 for calculating
the Levi-Civita connection.

Returning to the linearized TDVP equation [Eq. (81)], we can now look for specific solutions

B(n,t) = B+eipn−iωt + B−e−ipn+iωt (83)

and contract the free index I of this equation with a test vector B′ = {B ′(n)}n∈Z with B ′(n) = Beip′n. This essentially boils down
to a Fourier transform of the linearized TDVP equation with respect to both space and time, and results in

ω 〈	p′ (B
′
)|	p(B+)〉 = 〈	p′ (B

′
)|Ĥ − H |	p(B+)〉 + 〈ϒp′,−p(B

′
,B−)|Ĥ − H |�(A)〉 − ω 〈	p′ (B

′
)|	−p(B−)〉

(84)
= 〈	p′ (B

′
)|Ĥ − H |	−p(B−)〉 + 〈ϒp′,p(B

′
,B+)|Ĥ − H |�(A)〉 ,
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where H = H (A,A) = H [A0,A0] and we have introduced a new basis for the double tangent space as

|ϒp1,p2 (B1,B2)〉 =
∑

m<n∈Z

d∑
{sn}=1

eip1m+ip2nv
†
L

[(∏
k<m

Ask

)
B

sm

1

( ∏
m<k′<n

Ask′

)
B

sn

2

(∏
n<k′′

Ask′′

)]
vR |s〉

+
∑

m>n∈Z

d∑
{sn}=1

eip1m+ip2nv
†
L

[(∏
k<w

Ask

)
B

sn

2

( ∏
n<k′<m

Ask′

)
B

sm

1

(∏
n<k′′

Ask′′

)]
vR |s〉 . (85)

We then also define

〈ϒp1,p2 (B1,B2)|Ĥ − H |�(A)〉 = Kı,j (p1,p2)B
ı

1B
j

2 = 2πδ[(p1 + p2) mod 2π ]Kı,j (p1)B
ı

1B
j

2, (86)

where the expression for Kı,j (p1) can easily be derived using
the techniques that were used for the calculation of Hı,j (p). By
taking the complex conjugate of the second line in Eq. (84),
we can now write the Fourier-transformed linearized TDVP
equation as a generalized eigenvalue equation

ω

[
N (p) 0

0 −N (−p)

][
B+
B−

]
=
[

H (p) K(p)

K(−p) H (−p)

][
B+
B−

]
.

(87)

Note that the matrix appearing in the right-hand side of this
equation is Hermitian since H (p) and N (p) are Hermitian, and
K(p) satisfies K(p) = K(−p)T. If we would have linearized
the original TDVP equation for uMPS, we would only have
recovered the p = 0 case of the above equation. For p = 0, the
matrix in the right-hand side can easily be recognized as the
Hessian of the energy functional H (A,A) at the point A. We
could thus also have denoted Kı,j (0,0) as Hı,j = ∂ı∂jH . By
considering all momenta, we have actually constructed a mo-
mentum decomposition of the full Hessian of the energy func-
tional in the manifold of all MPS with site-dependent matrices.
Since A is a minimum of the energy functional in the class of
uMPS, this Hessian is positive (semi)definite at momentum
zero. If the uniform solution is also a minimum in the full
class of generic MPS, the corresponding Hessian is positive
(semi)definite at any momentum p. In that case, all eigenvalues
of the generalized eigenvalue equation in Eq. (87) are real.
In addition, for any eigenvector ω(k)(p) with corresponding

eigenvector (B(k)
+ (p),B

(k)
− (p)) at momentum p, there exists

a dual eigenvalue ω(−k)(−p) = −ω(k)(p) with eigenvector

(B(−k)
+ (−p) = B

(k)
− (p),B

(−k)
− (−p) = B

(k)
+ (p)). In particular, at

momentum zero, the spectrum is even around zero. Since many
systems are invariant under spatial reflections, we expect that
N (p), H (p), and K(p) will be gauge equivalent to N (−p),
H (−p), and K(−p). In that case, the spectrum of eigenvalues
of Eq. (87) is even around zero at all momenta since we then
have ω(−k)(p) = ω(−k)(−p) = −ω(k)(p).

From linear response theory, it can be argued that the eigen-
values ω of Eq. (87) correspond to resonances in the system
that should be related to the excitation energies of the system.64

Clearly, the Rayleigh-Ritz problem obtained for our variational
Ansatz for topologically trivial excitations is equivalent to the
linearized TDVP problem of Eq. (87) if the off-diagonal blocks
K(p) = 0. We now discuss the effect of having K(p) �= 0. The
matrix K(p) is obtained as (a momentum decomposition of)

the projection of Ĥ − H |�〉 to the double tangent space T(2),
which is spanned by the second-order derivatives |∂I ∂J �[A0]〉.
We have introduced the notation |ϒp1,p2 (B1,B2)〉 for momen-
tum states in T(2) in Eq. (85). We will elaborate on the physical
interpretation of this set of states in Sec. VII. For now, the struc-
ture of Eq. (87) seems to predict corrections to the variational
excitation energies (obtained from the diagonal part) by taking
into account a larger part of Hilbert space, namely, the part that
is captured by T(2). The problem with these corrections is that
they are not variational in nature, and can therefore be un-
bounded and unphysical. We illustrate in the next section how
Eq. (87) can give rise to spurious excitation energies which are
not physical and which do not show up when using the varia-
tional Ansatz |	p(B)〉. Since K(p) is obtained from projecting
Ĥ − H |�〉 onto the double tangent space, one can show that
‖K(p)‖ < ε̃(A,A) (some care has to be taken to deal with the
diverging prefactors), where ε̃(A,A) = �H (A,A)|Z|−1/2 is
the local measure for the state error. In the limit where the MPS
approximation is becoming very accurate, K(p) → 0 and the
variational energies will match the eigenvalues of Eq. (87).

Nevertheless, recognizing the right-hand side of Eq. (87) as
the Hessian of the energy functional is important for interpret-
ing the variational excitation energies, which correspond to the
eigenvalues of the diagonal block H (p). We have already men-
tioned that |�(A)〉 is a stationary solution, both in the manifold
of uMPS as well as in the manifold of generic MPS. Hence,
there are no corrections of first order in ε to the energy H [A,A]
when replacing A ← A0 + ε B. If for some momentum p,
the variational energies obtained from H (p) contain negative
values, this indicates that condensation of this excitation is
possible so as to create a lower-energy MPS approximation
of the ground state that is not uniform. Clearly, this should
not happen at momentum p = 0, as this would indicate that
the stationary solution A is not a minimum but rather a saddle
point or local maximum. For example, let H (p) have a negative
energy ω < 0 with corresponding eigenvector B+, and let
there be reflection invariance such that H (−p) also has eigen-
value ω with corresponding eigenvector B− (related to B+ by
a gauge transform). For A ← A0 + ε B, with B = {B(n)}n∈Z
and B(n) = exp(ipn)B+ + exp(−ipn)B−, the second-order
correction to the energy density will be

H [A,A] = H [A0,A0] + ε2

2
Z(B

ı

+Hı,j (p)Bj
+ + B

ı

−Hı,j (−p)

×B
j
− + B

ı

+B
j

−Kı,j (p) + Ki,j (p)Bi
+B

j
−). (88)
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The first two terms in the brackets reduce to ω < 0, whereas we
can certainly choose the phase of B+ and B− in such a way that
the last two terms are zero or negative as well. If this happens
for p �= 0, it indicates that the uniform solution |�(A)〉 is only
a minimum in the restricted manifold of uniform MPS, but not
in the manifold of generic MPS.

Finally, we can also discuss the Ansatz |	̃p(B)〉 for
topologically nontrivial excitations. The states |	̃κ (B)〉 do not
live in the tangent space T of M. However, if we construct
a larger manifold {|� ′[A′]〉} of MPS of bond dimension
D′ = D + D̃ and define the uniform solution A′

0 = {A′}n∈Z
with

A
′s =

[
As 0

0 Ãs

]
, (89)

then the topologically nontrivial excitation |	̃p(B)〉 is obtained
as the tangent vector |	′[C]〉 = CI |∂I�

′[A′
0]〉 with

Cs(n) =
[

0 Beipn

0 0

]
. (90)

Because of the special structure of A′, the point A′ = A′
0 is a

stationary point of the energy functional H [A′,A]. However,
A′

0 is not expected to be a true minimum in the variational
manifold of MPS with bond dimension 2D, and the effective
Hamiltonian for this variational Ansatz can have negative
eigenvalues. This would indicate that the uMPS |� ′(A′)〉 is
not stable at second order against fluctuations that mix the
two ground-state approximations |ψ(A)〉 and |ψ(Ã)〉 with
maximal symmetry breaking. Quantum fluctuations can thus
have the tendency to decrease the expectation value of the
order parameter with respect to the value obtained with mean
field theory, or with an MPS approximation of finite D. As
D grows larger and the approximation improves, the negative
eigenvalues should eventually disappear.

D. Dynamical correlation functions

We conclude this section by discussing how the tangent
space can assist in the computation of dynamical correlation
functions. Let the ground state of a system be well approxi-
mated by the uMPS |�(A)〉. As discussed in the Introduction,
dynamical correlation functions can either be computed in the
time domain, or directly in the frequency domain. Traditional
MPS algorithms for computing correlation functions in the
time domain had to put the system on a finite lattice,
although recently a number of competing algorithms have been
developed to deal with localized perturbations in an otherwise
translation-invariant background.38,65–67

Dynamical correlation functions can be obtained from
Fourier transforming the Green’s function G(α,β)(p,p′,ω) of
two operators Ô(α) and Ô(β), which is defined as

G(α,β)(p,p′,ω)

= 〈�(A)|Ô (α)†
p

1

ω − [Ĥ − H (A,A)] + iη
Ô

(β)
p′ |�(A)〉, (91)

where the Fourier transform of the operators Ô is defined as

Ôp =
∑
n∈Z

eipnT̂ nÔT̂ −n. (92)

We have subtracted the approximate ground-state energy
H (A,A) so as to get poles at finite excitation energies. Due
to the translation invariance, G(α,β)(p,p′,ω) is of the form
2πδ(p − p′)G(α,β)(p,ω) where G(α,β)(p,ω) is finite (aside
from its poles due to the excitation energies).

Clearly, for Ô(α) being one-site operators, the state
Ô(α)

m |�(A)〉 exactly corresponds to a tangent vector |	(B(α))〉
with B(α)s = 〈s|Ô(α)|t〉 At . We will generalize this to the case
where Ôα acts on K consecutive sites in Sec. VII. For now,
we can, without approximation, write

G(α,β)(p,p′,ω)

= 〈	(B(β))|P̂T
1

ω − [Ĥ − H (A,A)] + iη
P̂T|�(B(α))〉.

Note that existing methods for directly computing the Green’s
function,26,42–44,68–70 which are almost always formulated for
finite systems, try to approximate Ôα |�(A)〉, and sometimes
even (ω − [Ĥ − H (A,A)] + iη)−1Ôα |�(A)〉 as matrix prod-
uct states. While this has led to successful methods on the finite
lattice, the thermodynamic limit makes it clear that these states
do not have the normalizable structure of MPS, but rather the
structure of tangent vectors to the MPS manifold.

As we illustrate in the next section, the tangent space is
typically suited for capturing elementary excitations with a
single-particle-like or pointlike structure. If we expect that
these excitations are responsible for the dominant contribution
to the Green’s function G(α,β)(p,ω), then we can replace
Eq. (91) with

G(α,β)(p,p′,ω)

≈ 〈	(B(β))|P̂T
1

ω − [P̂TĤ P̂T − H (A,A)] + iη
P̂T|�(B(α))〉,

which leads to

G(α,β)(p,p′,ω)

≈ 2πδ(p − p′)B
(β)ı
[

1

ω − H (p) + iη

]
ı,j

B(α)j , (93)

where the part multiplying the 2πδ(p − p′) has been defined
as G(α,β)(p,ω) above. In practice, we use of course the
representation of H (p) and B in terms of the parametrization
X, in order to eliminate the null modes. As will be illustrated in
the next section, this approach is not able to accurately describe
the contribution of the multiparticle continuum. Nevertheless,
since Ô(α)

p |�(A)〉 is exactly in the tangent space, we do not
lose any spectral weight.

Finally, we note that we do not need a full inverse of ω −
H (p). If, for example, we are interested in the imaginary part
of G(α,β)(p,ω), which is often known as a spectral function or
a structure factor, then we can write

Im[G(α,β)(p,ω)] ≈ B
(β)

[δ{ω − H (p)}]ı,j B(α)j . (94)

The point is that we do not need to know the full eigenvalue
decomposition of H (p) [which would require an O(D6)
calculation] to compute the δ function in the previous equation.
Instead, we can decompose the δ function into Chebychev
polynomials.69 Indeed, we can easily and efficiently compute
arbitrary polynomials of the effective Hamiltonian H (p) acting
on |	(B(α))〉 without making any further approximation. This
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allows us to compute the right-hand side of Eq. (94) at a
fixed value of p, but for an arbitrary range of ω values, with
a computational efficiency that scales as O(ND3), where N

is the number of Chebychev moments that is used in the
decomposition of the δ function.

V. ILLUSTRATIVE EXAMPLES

We now provide a few selected examples that can be used
to illustrate some of the general statements of the previous
section regarding the tangent-space framework for excitations
and dynamical correlation functions.

A. Variational Ansatz for excitations

An interesting model to illustrate the behavior of the
variational Ansatz for excitations is the bilinear-biquadratic
antiferromagnetic Heisenberg model with S = 1 spins, which
is described by the SO(3)-invariant Hamiltonian

ĤBB = J
∑
n∈Z

cos θ (Ŝn · Ŝn+1) + sin θ (Ŝn · Ŝn+1)2, (95)

with an energy scale J > 0 and an angle θ ∈ [−3π/4,5π/4).
This model has many interesting phases and phase transitions
as a function of θ . There can not be antiferromagnetic order due
to the Mermin-Wagner theorem.71 Ferromagnetic order can
exist since the ferromagnetic order parameter commutes with
the Hamiltonian, and is indeed present for θ ∈ (π/2,5π/4).
At θ = 0, this Hamiltonian describes the antiferromagnetic
Heisenberg model. The ground state is then in a symmetry-
protected topologically ordered phase, the Haldane phase,
and the lowest-lying excitation is an S = 1 triplet with finite
mass �Haldane, referred to as the Haldane gap.72–74 The same
phase exists throughout θ ∈ (−π/4,π/4). In particular, for
tan θ = 1

3 , this is the model studied by Affleck, Kennedy,
Lieb, and Tasaki,11,12 which has an exact matrix product state
representation with bond dimension D = 2. At θ = ±π/4, an
exact solution in terms of the Bethe Ansatz is possible and
the model is critical. The dispersion relation shows nodes for
p = 0 and π for θ = −π/4 (the Takhtajan-Babudjan point),
and the model undergoes a second-order phase transition
to a dimer phase (only invariant under T̂ 2), which exists
for θ ∈ (−3π/4, − π/4). The existence of a small nematic
phase between the dimer phase and the ferromagnetic phase
has recently been ruled out.75 For θ = π/4, the dispersion
relation of the elementary excitation has nodes at p = 0
and p = ±2π/3 for θ = π/4. This critical behavior exists
throughout the range θ ∈ [π/4,π/2), no trimerization occurs,
and the system is a nematic phase. The transition at θ = π/4 is
supposedly of the Kosterlitz-Thouless type. The whole phase
diagram is summarized in Fig. 1 (see Refs. 76 and 77 references
therein).

In Ref. 17, the variational Ansatz was used at the Heisenberg
point θ = 0 in order to compute the value of the Haldane
gap �Haldane/J up to 12 digits of precision. We now turn
to the more general bilinear-biquadratic Heisenberg model
in the Haldane region −π/4 < θ < +π/4. As explained in
the beginning of this section, the model becomes critical at
the end points. Figure 2 depicts the full set of eigenvalues
of H (p) for θ decreasing from 0 to −π/4. Let us first

FIG. 1. Phase diagram of the bilinear-biquadratic Heisenberg
model (taken from Ref. 77).

discuss some general properties of the spectra obtained with
our variational strategy. First, one can observe that we have
labeled the different eigenvalues according to their SU(2)
spin quantum number S. We did not impose this symmetry
explicitly, but were able to read the irreducible representation
to which each eigenvalue belonged simply from its degeneracy,

FIG. 2. (Color online) Excitation spectrum (left) and Schmidt
spectrum (right) for the bilinear-biquadratic antiferromagnetic
Heisenberg model in the region θ ∈ (−π/4,0] obtained with a uMPS
Ansatz with bond dimension D = 24.
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which was almost perfect up to machine precision. The reason
for this is that we started from a ground-state approximation
|�(A)〉 where the bond dimension D = 24 was chosen so as to
contain a complete number of irreducible representations, and
which was then converged, also without imposing the SU(2)
symmetry explicitly, up to a state error ε̃(A,A) � 10−12.

Around momentum p = π , the lowest excitation energy is
separated from the rest of the spectrum and can be identified
with the elementary spin-1 magnon excitation, which we can
approximate well with our Ansatz, as can be inferred from
the numerical precision with which the Haldane gap can be
estimated.17 Other excitations all fall within the multimagnon
continuum, starting with the 2-magnon (S = 0,1,2) or 3-
magnon (S = 0,1,2,3) bands. Because we are diagonalizing
a finite matrix H (p) [dimensions (d − 1)D2 × (d − 1)D2]
for each momentum p, we obtain only a finite number of
excitation energies. We thus need to interpret the discrete
eigenvalues which are contained within the continuous spec-
trum of the full Hamiltonian. Clearly, the tangent space is not
suited as a variational subspace for describing multiparticle
excitations, as this would require an Ansatz containing several
perturbations of the ground state, which move independently
with different momenta. Since only the total momentum of
a state is a well-defined quantum number, we can, however,
create superpositions of these multiparticle states in order to
obtain a kind of artificial bound state, where all particles are
staying together in a small spatial region. Such states can
be described in the uMPS tangent space Tp and are thus
obtained from diagonalizing H (p). They are, however, not
good approximations for eigenstates of the full Hamiltonian
Ĥ since they contain a superposition of many exact eigenstates
with different energies. The only exception is when the exact
dispersion relation of the elementary excitation(s) of the full
Hamiltonian H is flat. In that case, all multiparticle excitations
should also have a flat dispersion relation. In general, we thus
need a different strategy to study multiparticle excitations, on
which we elaborate in Sec. VII.

For larger bond dimensions, a full diagonalization of H (p)
becomes infeasible. However, we now know that we should
only be interested in the lowest excitation energies and can thus
resort to an iterative eigensolver, which can be implemented
with computational complexity scaling as O(D3), as discussed
in the previous section. We can also make predictions about
the convergence behavior of the variational excitation energies
as a function of increasing bond dimension. Note that the
excitation energies are no longer truly variational in the most
strict sense since they can have negative errors. Indeed, there
are two competing sources of errors within our variational
strategy for studying excitations. First, the variational energy,
which is always positive, comes from trying to represent
the exact excited state as a uMPS tangent vector. However,
since we compute the energy from a redefined Hamiltonian
Ĥ ← Ĥ − H (A,A), we are also subtracting an approximation
to the ground-state energy which is too large. The result of
this second effect is a negative error. In fact, both sources
produce errors which are infinitely large, unless the uMPS
|�(A)〉 captures the ground state exactly. However, these errors
cancel each other because they have opposite sign and are
both related to an imperfect representation of the ground state.
The result is a finite error, containing a positive contribution

from the variational assumption that the excited state can be
obtained from a local perturbation of the ground state, and a
negative contribution from subtracting a ground-state energy
density which is too large in the region in which this local
perturbation has support. For multiparticle excitations, the first
error is clearly dominant and the resulting energies decrease
as the bond dimension is increased since this has the effect
of enlarging the spatial region on which the excitation has
support. In addition, new eigenvalues can appear within the
multiparticle continuum when D is increased. For elementary
excitations or bound states, on the other hand, the locality
assumption is often appropriate, and the second error typically
dominates. We then observe a variational excitation energy that
increases as D → ∞. It can, however, happen that the spatial
region on which the excitation has support is too small for small
values of D, in which case we also observe a decreasing energy
at low bond dimensions. Such effects were indeed observed in
Ref. 78, to which we refer for a more elaborate discussion on
this subject.

We now return to discuss the elementary magnon excita-
tion in the bilinear-biquadratic antiferromagnetic Heisenberg
model. For θ decreasing from 0 to −π/4, the excitation gap
at p = π decreases and eventually vanishes (see Fig. 2).
Simultaneously, the entanglement increases as can be noticed
by the Schmidt coefficients shifting upwards. At θ = −0.24π ,
the elementary magnon has in fact a slightly negative excitation
energy at p = π . While this is of course an artifact of the low
value of the bond dimension D = 24 since the critical point
is not until θ = −0.25π , it does indicate a tendency of these
magnons to condense, resulting in a ground state that breaks
translation invariance down to invariance under shifts over two
sites. Indeed, for θ < −π/4 the ground state of the system has a
dimer configuration. While a zero (negative) excitation energy
of the elementary magnon at p = π results in zero (negative)
excitation energies for some two-magnon excitations with
total momentum p = 0, the excitation energies found with our
Ansatz are positive at p = 0, as required by the fact that our
uMPS approximation is a minimum for the energy functional
on our variational manifold. This is a consequence of the
aforementioned fact that our Ansatz is not suitable for the
description of two-particle excitations. The negative energy
for the elementary excitation at p = π does, however, indicate
that we could have found a lower-energy density if we would
have used a two-periodic MPS with bond dimension D = 24,
as was explained at the end of Sec. IV C.

The same analysis can be repeated for θ increasing from
0 to π/4, which is sketched in Fig. 3. For θ slightly larger
than 0, the excitation energy of the elementary magnon
around p = π increases, resulting in smaller correlation length
and a decrease of the entanglement entropy (as indicated
by the Schmidt values shifting downwards). Indeed, at θ =
arctan( 1

3 ) ≈ 0.1024π , this is the AKLT model, for which the
ground state has an exact matrix product state representation
with D = 2. For θ = 0.10π , the importance of the Schmidt
coefficients λα for α > 2 has strongly decreased. If θ is
increased further, the excitation energy of the elementary
magnon starts to decrease around p = 2π/3 and eventually
a null mode develops. Once again, the excitation energy is
slightly negative for θ = 0.24π , which is an artifact of the
small bond dimension D = 24. This could again be interpreted
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FIG. 3. (Color online) Excitation spectrum (left) and Schmidt
spectrum (right) for the bilinear-biquadratic antiferromagnetic
Heisenberg model in the region θ ∈ [0,π/4) obtained with a uMPS
Ansatz with bond dimension D = 24.

as an indication for condensation of elementary magnons with
momentum 2π/3 in the phase transition at θ = π/4, which
would result in the breaking of translation invariance down
to invariance under shifts over three sites. However, in the
exact solution, no such trimerization occurs and the model
remains critical throughout θ ∈ [π/4,π/2). Hence, while the
MPS approximation and derived methods for excitations can
provide valuable information about the phase of a system and
the nature of a phase transition, such information is not always
reliable and should be used carefully.

B. Linearized time-dependent variational principle

We now elaborate on the relation between the tangent
space as variational Ansatz for excitations, and the resonance
frequencies that we obtain from linearizing the TDVP equa-
tion around the variational optimum |�(A)〉. For the S = 1
Heisenberg antiferromagnet [θ = 0 in Eq. (95)], we perform
an exact diagonalization of the generalized eigenvalue problem
of Eq. (87) and compare the eigenvalues to the eigenvalues

FIG. 4. (Color online) Comparison of the excitation spectrum
ω obtained with the linearized TDVP equation [Eq. (87)] (green
dots) with the excitation spectrum obtained with the tangent-space
variational Ansatz for excitations |	p(B)〉 (red circles), for the
Heisenberg model studied at bond dimension D = 24. Also shown
is the absolute value of the difference between the dispersion
relations (black squares, to be read on the right axis) for the lowest
excitation, which corresponds to the elementary spin-1 magnon in
the momentum range π

4 � |p| � π .

of the first diagonal block H (p). Note that, in the latter
case, we have a variational Ansatz state |	p(B)〉 for the
corresponding excitation, whereas in the former, we do not. For
bond dimension D = 24, a comparative result between both
sets of eigenvalues is sketched in Fig. 4. The doubled spectrum
of eigenvalues of Eq. (87) is reflection invariant around zero.
For the lowest (positive) eigenvalue, we also plot the absolute
value of the difference between both approaches.

For D = 24, the localized state error ε̃(A,A) is approx-
imately 3 × 10−3. In the region around p = π , the lowest
eigenvalue obtained with both methods corresponds to the
elementary S = 1 magnon excitation. It can be observed from
Fig. 4 that the difference between both dispersion relations is
much smaller than ε̃(A,A) in that region. The second tangent-
space correction that is contained in the larger eigenvalue
problem of Eq. (87) contributes little to the elementary
excitations. Hence, for larger values of the bond dimension
D, we expect the difference between the two approaches to
be practically inexistent for elementary excitations. However,
around p ≈ π/4, the two-magnon continuum becomes lower
in energy and the single-magnon excitation ceases to exist.46 In
that region, the difference between both approaches increases,
which is to be expected, since the uMPS tangent space T
is no longer a good variational subspace for multiparticle
excitations. Corrections obtained from taking the second
tangent space into account thus become more substantial.

Note, however, that the larger eigenvalue problem obtained
from linearizing the TDVP is not equivalent to a variational
Ansatz taking the second tangent space into account. This
would be a completely different approach, that is far more
difficult, as even within a given sector of fixed total momentum
p, the second tangent space to the manifold of MPS contains
infinitely many degrees of freedom. We return to this question
in Sec. VII C. There is no variational Ansatz and hence no
variational principle associated to the eigenvalues obtained
from Eq. (87). This lack of an underlying variational principle
results in uncontrollable errors and the possibility for spurious
solutions, as we now demonstrate.
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FIG. 5. (Color online) Similar comparison of the excitation
spectrum ω obtained with the linearized TDVP equation [Eq. (87)]
(green dots) with the excitation spectrum obtained with the tangent-
space variational Ansatz for excitations |	p(B)〉 (red circles), for the
Heisenberg model at bond dimension D = 23 and 25.

All went well for the results in Fig. 4 since we tuned
the bond dimension to be commensurable with the SO(3)
degeneracy in the virtual space, i.e., the spectrum of Schmidt
coefficients contains an exact number of spin multiplets. As
is well known, the Haldane phase is a symmetry-protected
topological phase since it only has nontrivial projective
representations of SO(3) in its virtual space, i.e., it only
has half-integral spin multiplets and every Schmidt value
has an even degeneracy.74 If we choose an odd-valued bond
dimension such as D = 23 or D = 25, the virtual space
can not entirely consist out of complete half-integral spin
representations, and some vectors of an incomplete multiplet
will have to be added. The variational optimum is then no
longer unique: there will be a flat valley of equally good
choices A that produce the same energy expectation values
〈�(A)|Ĥ |�(A)〉. Different values of A correspond to different
choices of Schmidt vector associated to the smallest Schmidt
coefficient. A first effect of this degenerate valley of energy
optima is that the location of the energy optimum with an
imaginary-time simulation according to the time-dependent
variational principle converges much slower. In addition, the
corresponding optimum |�(A)〉 will have a slight breaking
of the SO(3) symmetry of the Hamiltonian, of the same
order as the size of of the Schmidt coefficients of the broken
multiplet. The effect on the excitation spectrum obtained with
the variational Ansatz and with the linearized TDVP equation
is shown in Fig. 5. The variational Ansatz |	(B; A)〉 still
produces a qualitatively correct excitation spectrum, where the
degeneracy of the elementary S = 1 magnon is slightly lifted.
The energy difference between the three states is easily an
order of magnitude smaller than the size of the Schmidt coeffi-
cients of the broken multiplet, i.e., in the order of 10−4 to 10−5.
In contrast, when using the linearized TDVP equation around
a given point in this optimal value, then it produces a fake null

mode. Indeed, let A(s) be a one-parameter group of tensors
A that runs through this valley. Then, 〈�(A(s))|Ĥ |�(A(s))〉
is s independent. Since all of these are variational optima, we
automatically obtain 〈�(A(s))|Ĥ |	p(B; A(s))〉 = 0 for any
|	p(B; A(s))〉 ∈ T⊥

MPS(A(s)). We also obtain

d2

ds2
〈�(A(s))|Ĥ |�(A(s))〉

∣∣∣∣
s=0

= 2 〈	0(B|Ĥ |	0(B)〉 + 〈�(A)|Ĥ |ϒ0,0(B,B)〉
+ 〈ϒ0,0(B,B)|Ĥ |�(A)〉

= [ B† B
† ]

[
H (0) K(0)

K(0) H (0)

][
B

B

]
= 0

with A = A(0) and B = dA/ds(0). Hence, the Hessian of the
energy appearing in the left-hand side of Eq. (87) for p = 0
has a zero eigenvalue, and so does the generalized eigenvalue
equation of Eq. (87) itself. In fact, for the present case,
there are two independent null modes. This could be argued
to be a good thing since the above proof essentially shows
the existence of Goldstone modes whenever the ground state
breaks a continuous symmetry. However, the problem with this
null mode is that it is always there, irrespective of how good
the ground-state approximation |�(A)〉 is and how small the
remaining symmetry breaking is. If the symmetry breaking is
only tiny, so is the lift of the degeneracy of the spin multiplets in
the eigenvalue spectrum of H (p). In contrast, the spectrum of
eigenvalues of Eq. (87) completely loses its multiplet structure
as it starts with a twofold degenerate Goldstone mode and the
energy difference between the different magnon excitations
can be as large as O(10−2). This indicates how fragile the
eigenvalue structure of Eq. (87) is.

If we have unwillingly broken an unknown symmetry of
the Hamiltonian, no matter how small the symmetry breaking
is, the linearized TDVP equation [Eq. (87)] will always force
a zero-energy mode upon us. It is unable to detect whether
the symmetry breaking is artificial, i.e., the optimal valley
of A’s map to states |�(A)〉 ∈ M which are very close in
Hilbert space and are centered around one unique direction
|�0〉 (the true ground state) that is not exactly contained in
the manifold (or whether the symmetry breaking is physical),
i.e., the optimal valley of A’s map to states |�(A)〉 that are
lying in completely different direction of Hilbert space and
are close to the different directions in the exact degenerate
ground-state subspace. In the latter case, if we can well
approximate the different ground state by uMPS |�(A)〉,
we expect that H (p) itself contains very small eigenvalues
corresponding to Goldstone modes since the terms K(0) vanish
for the exact ground state anyway. As a final example, we plot
the same comparison for bond dimension D = 20 in Fig. 6.
Even though this value of the bond dimension is even, it still
cuts through a spin multiplet in the virtual space since the
Schmidt coefficients with number 17 to 22 all correspond to
an S = 5

2 multiplet. For D = 23 and 25, we had two Goldstone
modes that became massless both at p = 0 and π , but aside
from those, Eq. (87) did reproduce a nearly degenerate gapped
magnon excitation around the same energy as the variational
Ansatz. For D = 20, the situation is completely different. The
two Goldstone modes are only massless at momentum p = 0,
but mix with other excitations near momentum π . Indeed, aside

075133-25



HAEGEMAN, OSBORNE, AND VERSTRAETE PHYSICAL REVIEW B 88, 075133 (2013)

FIG. 6. (Color online) Similar comparison of the excitation
spectrum ω obtained with the linearized TDVP equation [Eq. (87)]
(green dots) with the excitation spectrum obtained with the tangent-
space variational Ansatz for excitations |	p(B)〉 (red circles), for the
Heisenberg model at bond dimension D = 20.

from the magnon excitation and the two Goldstone modes,
we find other excitations below the multiparticle continuum
around momentum π .

C. Spectral functions

We close this section by showing a simple result for the
spectral function obtained by computing Eq. (94). For the
S = 1 Heisenberg antiferromagnet, where we use Ô(α) =
Ô(β) = Ŝx , we obtain the result in Fig. 7. If we look at
absolute scale, we note that the spin operators have a large
overlap with the single magnon excitation around momentum
p = π , but that this overlap goes to zero very quickly as the
momentum gets closer to the point where the single magnon
excitation vanishes in the two-particle continuum. By looking
at the logarithm of the spectral function, we show that part
of the spectral weight is also distributed over the discrete
eigenvalues in the multimagnon continuum. Since the tangent
space T captures Ŝ(x)

p acting on the ground state exactly,
no spectral weight is lost. Since we accurately reproduce
the single magnon dispersion relation,17 we assume that the
corresponding variational estimate for the eigenstate |	p(B)〉
is sufficiently accurate to correctly capture the spectral overlap
with the spin operators. Then, we necessarily also have an
accurate estimate for the fraction of the spectral weight that

FIG. 7. (Color online) Spectral function Im[G(xx)(ω,p)] for the
S = 1 Heisenberg antiferromagnet with operators Ô (α) = Ô (β) = Ŝx ,
as obtained from Eq. (94). We have applied the Chebychev decom-
position of the δ function using the first N = 1000 polynomials. The
bond dimension was chosen as D = 192.

FIG. 8. (Color online) Density of states N (ω) obtained from
integrating Im[G(xx)(ω,p)] over p ∈ [0,2π ) for the S = 1 Heisenberg
antiferromagnet. We show results where we have applied the
Chebychev decomposition of the δ function using a varying number
N = 250, 500, or 1000 polynomials. The bond dimension was chosen
as D = 192.

is lost to the 2- and 3-magnon continuum, but instead of this
spectral weight being spread out in a continuous distribution
over ω, it is localized at the artificial, discrete set of eigenvalues
that is supported within the tangent space. Hence, while
a tangent-space-based computation of spectral functions is
acceptable if the only interest is in the contribution of the
elementary excitations, it can not accurately reproduce the
contribution of multiparticle excitations. A more advanced
strategy is required, the foundations of which are discussed in
Sec. VII C.

Finally, we can also integrate Im[G(xx)(ω,p)] over the mo-
mentum to obtain the density of states N (ω). This is illustrated
in Fig. 8 and compares well to the results in Figs. 5 and 6
of Ref. 49. Clearly, the tangent space offers a very efficient
method to directly generate spectral functions or the density of
states once we have obtained the uMPS approximation |�(A)〉
of the ground state. With the tangent-space approach, we did
not need any kind of statistical procedures to extract or improve
the result, nor did we need to take any kind of boundary effects
or finite-size effects into account. Note that, as the number of
terms N in the Chebychev decomposition of the δ function
increases, the peaks become sharper and higher, and will
eventually develop into singularities for N → ∞. The fringes
that appear for N = 1000 indicate that the discretization of
the momentum p (namely, dp = π/200) is too rough, which
is why the contribution of individual momentum states in the
integrated quantity N (ω) become visible.

VI. ANALOGIES WITH OTHER VARIATIONAL METHODS

The TDVP is a general method that can be applied to
any variational manifold for any quantum problem, be it a
single-particle or a many-particle quantum system. However, it
is not guaranteed that for any variational manifold the tangent
space provides a suitable Ansatz for elementary excitations
of the system. In fact, it is a remarkable property of the
manifold of MPS that its tangent space contains states which
seem to have the correct structure for well approximating
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elementary excitations. The best motivation for recognizing
that this is indeed the correct structure is not via the linearized
TDVP equation, but by observing that the MPS tangent vectors
generalize the Feynman-Bijl variational Ansatz for excitations.
In fact, this observation allows us to simply generalize the
excitation Ansatz to states which are no longer in the MPS
tangent space, as described in the next section.

Nevertheless, we now try to compare the methods con-
structed in the previous sections to similar developments with
other variational methods that are used in the context of
quantum many-body systems. The most prominent example
is without doubt Hartree-Fock theory, i.e., mean field theory
for a system of N -fermionic particles.79–83 The variational
manifold is the set of all Slater determinants, and can be
identified with a Grassmann manifold. Applying the TDVP
for D > 1 results in time-dependent Hartree-Fock theory, and
by linearizing these equations around the stationary solution,
one obtains the so-called random phase approximation.84,85

In this context, the random phase approximation can also be
derived using Green’s function techniques86 or by using the
equations-of-motion approach.87

In line with what we have illustrated in the previous section,
is it well known in quantum chemistry and nuclear physics
that the random phase approximation can be plagued by
instabilities. In that case, it is also better to ignore the off-
diagonal blocks in the generalized eigenvalue equation, which
boils down to a diagonalization of the Hamiltonian within the
tangent space86 and which is known as the Tamm-Dancoff
approximation.88,89 However, unlike as for MPS, which has
a refinement parameter D (the bond dimension), there is no
systematic way to improve the Hartree-Fock approximation
for the ground state, and the random phase approximation
very often provides the only way of taking correlations in the
ground state into account.

For Hartree-Fock theory, the tangent space consists of
all single particle-hole excitations, and there is one-to-one
mapping between derivatives with respect to the variational
parameters and physical excitation operators creating the
same tangent state. Similarly, the second tangent space of
the Hartree-Fock manifold corresponds to all states with two
particle-hole excitations on top of the Slater determinant. We
discuss the possibility for excitation operators that are in
one-to-one correspondence to the tensors B for the case of
MPS tangent vectors in the next section, as these are required
for further developments that take us beyond the tangent space.
For a more detailed comparison between Hartree-Fock theory
and matrix product states on finite lattices, we refer the reader
to Ref. 90. This paper also describes and implements an MPS
analog of the post-Hartree-Fock method CISD, which is an
abbreviation for configuration interaction with singles and
doubles, and boils down to an exact diagonalization of the
Hamiltonian within the subspace obtained by combining the
optimal MPS, its tangent space, and its double tangent space.
However, such a method breaks down in the thermodynamic
limit, as it lacks extensivity. Indeed, the MPS tangent space and
double tangent space have a different normalization structure
and can not lower the energy density. Constructing an MPS
analog of an extensive post-Hartree-Fock method such as
coupled cluster theory, on the other hand, could also be relevant
for calculations in the thermodynamic limit.

Mean field theory for bosons can start from the N -
particle wave function �(�r1, . . . ,�rN ) = ∏N

n=1 ϕ(�rn) or, for
systems in second quantization, from the coherent state
|�〉 = exp

[ ∫
ϕ(�r)ψ̂†(�r) d�r] |�〉. In both cases, the variational

parameters correspond to the choice of single-particle function
φ(�r). Applying the TDVP results in the Gross-Pitaevskii
equation for ϕ(�r).91,92 Linearization around the stationary
point results in the Bogoliubov–de Gennes equation.93 As in
Hartree-Fock theory, there is a clear link between the tangent
vectors and the action of physical operators since

δ

δϕ(�r)
|�〉 = δ

δϕ(�r)
exp

∫
ϕ(�r)ψ̂†(�r) d�r |�〉

= ψ̂†(�r) |�〉

and the Bogoliubov–de Gennes equation can also be obtained
from a bosonic expansion of the Hamiltonian up to second
order, which clearly shows its nonvariational character (since
higher-order terms of the expansion are being ignored). The re-
lation between the Gross-Pitaevskii theory and our framework
is best studied with continuous MPS.94–96 Indeed, a continuous
MPS with bond dimension D = 1 corresponds exactly to
the mean field coherent state |�〉, whereas correlations are
systematically included for larger D. Applying the TDVP
for D > 1 results in a noncommutative version of the Gross-
Pitaevskii equation.97

VII. BEYOND THE TANGENT SPACE

Most of this paper so far has been focused on the MPS
tangent space T, although we also briefly encountered states
in the double tangent space T(2). We now discuss several
extensions that go beyond the strict MPS tangent space T.
As there is no natural reason to stick to the tangent space when
constructing a variational Ansatz for excitations, we discuss
the effect of using tensors B that act on several sites in the first
subsection. While the tangent space did appear naturally for
time evolution, we show in the second subsection that there
can also be a role for momentum zero states with a tensor
B acting on several sites. Finally, in the last subsection, we
give a general outlook on how successively replacing more
and more A matrices corresponds to building multiparticle
states, eventually leading to the construction of a complete
Fock space in which we can define an effective low-energy
theory. Therefore, we need to link the action of replacing
tensors A to physical operators.

A. Spreading blocks over several sites

As a variational Ansatz for excitations, the tangent vectors
|	p(B)〉 constructed at the base point |�(A)〉 were motivated
because they capture exactly the Feynman-Bijl Ansatz for
one-site operators. We expect that these states can accurately
capture the effect of operators with bigger support as well
since, via the virtual dimension, the tensor B can have have
an effect over a distance approximately logd D away from the
site on which B is living. However, there is no intrinsic reason
why we should stick to the tangent space, and we can define a
generalized excitation Ansatz where we replace the tensors A
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TABLE I. Variational excitation energy for the single magnon
excitation at momentum p = π in the AKLT model, obtained by
using the variational Ansatz |	p=π,K (B)〉, where the tensor B replaces
the matrices A on K consecutive sites.

K Emagnon

1 0.370370370370370
2 0.350634581086138
3 0.350165202217295
4 0.350129173076820
5 0.350124768941854
6 0.350124225439426
7 0.350124164567491
8 0.350124158096952
9 0.350124157417523
10 0.350124157346044
11 0.350124157338490
12 0.350124157337687

on a block of K consecutive sites by a single tensor B as

|	p,K (B; A)〉 =
∑
n∈Z

eipn

d∑
{sn}=1

v
†
L

[(∏
m<n

Asm

)
Bsnsn+1...sn+K−1

×
( ∏

m′�n+K

Asm′

)]
vR |s〉. (96)

One particular example where this construction is extremely
useful is when the ground state is an exact MPS, as for the
AKLT model. In that case, it is impossible to systematically
improve the tangent-space Ansatz |	p(B)〉 = |	p,1(B)〉 since
there is no point in increasing the bond dimension. Note that
in this case the error on the approximate excitation energies
is purely variational, i.e., the variational energies are an upper
bound for the exact value. By increasing the spatial support of
B, the variational energies can systematically be lowered and
will thus converge to the exact result. We can show that this
convergence is exponentially fast.98 Table I shows the value
for the magnon gap at momentum p = π in the AKLT model,
obtained with this Ansatz for K ranging from 1 to 12, and it
can be observed that the energy converges at a rate of approx-
imately 1 digit per extra site. The K = 1 case corresponds to
E(K=1)

magnon = 10
27 , as was calculated analytically in Ref. 58.

For systems where the ground state is not an exact MPS, it
can of course also be useful to combine the scaling in D with
a scaling in K , in particular for approximating excitations of
which we expect that they might be spread out over a large
number of sites, such as bound states with a very weak binding
energy.

For dynamic correlation functions, it can also be useful to
work in the larger subspace Tp,K , in particular when trying
to evaluate the Green’s function of operators Ô (α) which have
support on more than one site. As long as the size of the
support of Ô(α) is smaller than or equal to K , the subspace
Tp,K can capture Ô(α)

p [defined in Eq. (92)] exactly and no

spectral weight is lost if Ĥ is being replaced by the effective
Hamiltonian onTp,K in Eq. (91). If, however, K is smaller than
the number of sites on which Ô(α) acts, then a truncation occurs
and part of the spectral weight will be lost in the approximation.

In order to be able to work with the variational subspace
Tp,K efficiently, we need to be able to transfer some of the
techniques of parametrizing tangent vectors to this larger
space. For example, we can now discuss the null space
Np,K of the linear map 	p,K : CD×dK×D → H. While we
can not infer the form of the null modes from the principal
fibre bundle construction of M, we can easily generalize the
map N(A)

p defined in Eq. (13) and just check explicitly that
|	p,K (B)〉 = 0 for any B which is of the form

Bs1s2...sK−1sK = As1xs2...sK−1sK − e−ipKxs1s2...sK−1AsK ,

∀ X ∈ CD×dK−1×D.

The dimension of the null space Np,K of 	p,K is thus given
by the number of linearly independent tensors B that can
be obtained from this construction. Expressing that B = 0,
multiplying this equation with (As1 . . . AsK )†l and summing
over all physical indices results in the condition (l|Ex

A...A(1 −
e−iKpE) = 0. We have introduced the shorthand notation

Ex
A...A =

d∑
s1=1

. . .

d∑
sK−1=1

xs1...sK−1 ⊗ A
s1

. . . A
sK−1

.

Clearly, this condition can not be satisfied for p �= 0,
while for p = 0 the one-dimensional solution space is
given by xs1...sK−1 ∼ As1 . . . AsK−1 . However, expressing that
|	p,K (B)〉 ⊥ |�(A)〉 imposes an additional condition at mo-
mentum zero, so that the subspaces T⊥

p,K which are orthogonal
to the ground state have a physical dimension (d − 1)dK−1D2.

One can then also show that the a complement to the null
spaceNp,K can be constructed as the subspaceBK of solutions
to either the left or right gauge fixing condition

d∑
s=1

As†lBss2...sK = 0, ∀ s2, . . . ,sK = 1, . . . ,d

or
d∑

s=1

Bs1s2...sK−1srAs† = 0, ∀ s1, . . . ,sK−1 = 1, . . . ,d.

(97)

We can then build a linear representation Bs1s2...sK = BK (X) =
l−1/2V

s1
L Xs2...sK r−1/2, where the free parameters are repre-

sented by a tensor X ∈ C(d−1)D×dK−1×D , which automatically
satisfies the left gauge fixing condition and for which

〈	p,K (BK (X))|	p′,K (BK (X′))〉

= 2πδ(p − p′)
d∑

s2=1

. . .

d∑
sK=1

tr[Xs2...sK†X
′s2...sK ]. (98)

Hence, in terms of the degrees of freedom in X, the effective
normalization matrix is the unit matrix. We can then define
the effective Hamiltonian by generalizing the computation
from Sec. IV and diagonalize it iteratively to obtain a method
that scales as O(dKD3). Clearly, the exponential scaling
in K limits the block sizes that we can achieve with this
approach. However, if for describing some excitation we
would like to have access to larger block sizes, the tensor
B itself can also be written as matrix product decomposition
Bs1s2...sk = Bs1 (1)Bs2 (2) . . . BsK (K).
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Finally, we elaborate on the obvious statement that
T⊥

p = T⊥
p,1 ⊂ T⊥

p,2 ⊂ . . . ⊂ T⊥
p,K . We can represent any

|	p,K−1(B̃)〉 as a vector |	p,K (B)〉 ∈ T⊥
p,K . Note that we are

restricting our discussion to the tangent spaces orthogonal
to the uMPS |�(A)〉 since this is a restriction that we will
always want to make in applications. One way to represent this
embedding in the parametrization is by setting Bs1...sK−1sK =
B̃s1...sK−1AsK , which has the favorable effect that if B̃ satisfies
the left gauge fixing condition [first equation in Eq. (97)], then
so will B. Now, for any K � 2, we can also try to define the
space Vp,K as the orthogonal complement of T⊥

p,K−1 in T⊥
p,K ,

i.e.,Vp,K contains all states |	p,K (C)〉 which are orthogonal to
all vectors |	p,K−1(B)〉. Note that we can easily parametrize
Vp,K , by setting

Cs1,...,sK = Vs1,...,sK (Y ) = l−1/2V
s1
L Y s2,...,sK−1V

sK

R r−1/2,

where Y ∈ C(d−1)D×dK−2×(d−1)D . Here, we have introduced the
set of (d − 1)D × D matrices V s

R (s = 1, . . . ,d) which is such
that

∑d
s=1 V

s†
R r1/2As = 0 and

∑d
s=1 V

s†
R V s

R = 1(d−1)D . This
matrix can be created analogously to the construction for VL

as discussed in the context of Eq. (19). One would need VR to
build a parametrization of tangent vectors that automatically
satisfies the right gauge fixing condition. Note that the
number of parameters in Y corresponds to the dimension
of Vp,K . Indeed, since T⊥

p,K has a dimension dK−1(d − 1)
D2, the dimension of Vp,K is given by dK−1(d − 1)
D2 − dK−2(d − 1)D2 = dK−2(d − 1)2D2. It can also by
checked that 〈	p,K−1(B)|	p,K (C)〉 = 0 for any C = V(Y ),
and for any |	p,K−1(B)〉 ∈ T⊥

p,K−1. In addition, we also obtain

〈	p,K (V(Y ))|	p′,K (V(Y ′)〉 = 2πδ(p − p′) tr[Y †Y ′] (99)

so that this parametrization corresponds to an effective
normalization matrix which is the unit matrix. There is at
least one simple application of this construction. The error
measure ε(A,A) was defined in Eq. (3) as the norm of the
part of [Ĥ − H (A,A)] |�(A)〉 that was lost in the projection
onto the MPS tangent space Tp. If Ĥ is a nearest-neighbor
Hamiltonian Ĥ = ∑

n∈Z T̂ nĥT̂ −n, with ĥ acting on two sites,
we can exactly represent [Ĥ − H (A,A)] |�(A)〉 in T⊥

p=0,K=2.
Hence, the error measure corresponds to the norm of the
projection of [Ĥ − H (A,A)] |�(A)〉 onto Vp=0,K=2. Using
the parametrization V, we can easily obtain that P̂Vp=0,K=2 [Ĥ −
H (A,A)] |�(A)〉 = |	p=0,K=2(V(Y ))〉, where Y is given as

Y =
D∑

s,t,u,v=1

〈s,t |ĥ|u,v〉V
s†
L l1/2AuAvr1/2V

t†
R . (100)

We then obtain for the localized error measure
ε̃(A,A) = ‖Z‖−1/2ε(A,A) = ‖Z‖−1/2‖|	p=0,K=2(V(Y ))〉‖ =√

tr[Y †Y ] = ‖Y‖F. Hence, we do not have to compute a
difference of terms which are almost equal in magnitude.
This is a a much quicker and more stable algorithm for
computing ε̃(A,A). If Ĥ contains only local interactions
up to K sites, we can easily compute the norm of the
projection of [Ĥ − H (A,A)] |�(A)〉 onto all spaces Vp=0,k

for k = 2, . . . ,K . The local error measure ε̃(A,A) is then
obtained as the square root of the sum of the squares of all

these norms, and is thus computed as a sum of positive values,
without any risk for contributions that neutralize each other.

B. Dynamic expansion of the manifold

For studying time evolution, the MPS tangent space
appeared naturally. If we want to approximate a time-evolving
quantum state as a time-evolving MPS with bond dimension
D, the time derivative of the state has to be an element of
the MPS tangent space at that particular point, and the TDVP
is prescribing which tangent vector is optimal. Nevertheless,
it also interesting to ask oneself would it imply to try to
evolve a uMPS |�(A)〉 in a direction given by a state
|	0,K (B)〉 ∈ T|�(A)〉

0,K for K > 1. In particular, for nearest-
neighbor Hamiltonians Ĥ = ∑

n∈Z T̂ nĥT̂ −n with ĥ acting on
two sites, we can exactly represent Ĥ |�(A)〉 in Tp=0,K=2.
The way to go beyond to tangent space is by noting that
for a variational class such as MPS, which has a refinement
parameter D, it is not necessary to have a fixed value for
D throughout the whole evolution. Suppose that at some
point during the evolution, the error measure ε̃(A,A), which
measures the difference between the TDVP evolution and the
exact evolution given by the Schrödinger equation, exceeds
some predefined tolerance value. We then might try to reduce
the error by expanding the variational manifold by increasing
the bond dimension from its original value D to some new
value D̃. We can easily embed a uMPS |�(A)〉 ∈ M with
bond dimension D into the uMPS manifold M̃ with bond
dimension D̃ by writing it as |�̃(Ã)〉 with

Ãs =
[

As 0

0 0

]
. (101)

Note, however, that Ã is not in the set of injective MPS Ã,
which has some undeniable consequences. For example, if
we follow the TDVP spirit in the most strict sense, we set
Ã(t = 0) = Ã and

d

dt
Ã(t) = B̃ =

[
Bs

1,1 Bs
1,2

Bs
2,1 Bs

2,2

]
, (102)

with Bs
1,1 a D × D matrix, Bs

1,2 a D × (D̃ − D) matrix, Bs
2,1 a

(D̃ − D) × D matrix, and Bs
2,2 a (D̃ − D) × (D̃ − D) matrix.

We then find the B̃ that minimizes ‖ |	̃(B̃,Ã)〉 + iĤ |�̃(Ã)〉‖.
By construction, |�̃(Ã)〉 = |�(A)〉. However, we also find
|	̃(B̃,Ã)〉 = |	(B1,1,A)〉 and the newly added directions B2,1,
B1,2, and B2,2 do not feature to first order. The TDVP is
very keen to restricting its evolution to the original manifold
M. Put differently, because Ã is not in the set of injective
MPS Ã, it corresponds to a singular region where the tangent

space T̃
|�̃(Ã)〉
0 does not have dimensions (d − 1)D̃2 but rather

(d − 1)D2.
A solution for this problem is to use a kind of singular

perturbation theory. We set Ã(dt) = Ã + d̃A with

d̃A
s =

[
dtBs

1,1 (dt)1/2Bs
1,2

(dt)1/2Bs
2,1 Bs

2,2

]
. (103)

We then obtain to first order in dt that

|�̃(Ã + d̃A)〉 − |�̃(Ã)〉 = |d̃�0〉 + |d̃�1〉 + O(dt2) (104)
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with

|d̃�0〉 = dt |	p=0,K=1(B1,1; A)〉 (105)

and

|d̃�1〉 = dt
∑
n∈Z

d∑
{sn}=1

+∞∑
m=0

v
†
L

(∏
k<n

Ask

)

×B
sn

1,2B
sn+1
2,2 . . . B

sn+m

2,2 B
sn+m+1
2,1

( ∏
k>n+m+1

Ask

)
vR |s〉.

(106)

In particular, if we set B2,2 = 0, we obtain |d̃�1〉 =
dt |	p=0,K=2(B; A)〉 with Bs1s2 = B

s1
1,2B

s2
2,1. Since we already

have |d̃�1〉 ∈ Tp=0,K=1, we can restrict to |d̃�2〉 ∈ Vp=0,K=2,
so that we can parametrize

Bs
1,2 = l−1/2V s

LZ1,2 and Bs
2,1 = Z2,1V

s
Rr−1/2, (107)

where Z1,2 ∈ C(d−1)D×(D̃−D) and Z2,1 ∈ C(D̃−D)×(d−1)D . We
then automatically have 〈d̃�1|d̃�2〉 = 0. If we now try to im-
itate the geometric strategy of the time-dependent variational
principle, we have to optimize the parameters B1,1, B1,2, and
B2,1 so as to minimize

‖|d̃�0〉 + |d̃�1〉 + i dtĤ |�̃(Ã)〉‖2. (108)

Because of the orthogonality of |d̃�1〉 and |d̃�2〉,
the optimization of the parameters B1,1 decouples from the
optimization of the parameters B1,2 and B2,1. For B1,1, we
can use the standard TDVP prescription, i.e., if we use the
left gauge fixing condition, then B1,1 = B(F ) as described in
Sec. III E. For the remaining parameters, we need to extremize

〈d̃�1|d̃�1〉 + i dt 〈d̃�1|Ĥ |�(A)〉 − i dt 〈�(A)|Ĥ |d̃�1〉
= (dt)2 {tr[(Z1,2Z2,1)†(Z1,2Z2,1)] + tr[(Z1,2Z2,1)†Y ]

+ tr[Y †(Z1,2Z2,1)]
}
,

where Y was defined in Eq. (100) for the case of a Hamilto-
nian with nearest-neighbor interactions. We are thus looking
for the optimal matrix Z1,2Z2,1 of rank D̃ − D such that
‖Z1,2Z2,1 − Y‖F is minimized, with ‖ . . . ‖F the Frobenius
norm or Hilbert-Schmidt norm. The best approximation can
thus found by performing a singular value decomposition of
the (d − 1)D × (d − 1)D matrix Y and retaining the largest
D̃ − D singular values. If D̃ = dD, we can exactly capture one
time step of the Schrödinger evolution for a nearest-neighbor
Hamiltonian exactly. This compares well to TEBD, where an
exact application of the lowest-order Trotter decomposition
of a nearest-neighbor Hamiltonian also increases the bond
dimension from D to D̃ = dD.

Clearly, we can also generalize this construction to be able
to evolve according to states in Tp=0,K by using

d̃A = (dt)1/K

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 B1,2 0 . . . 0

0 0 B2,3 . . . 0

...
...

...
. . .

...

0 0 0 . . . BK−1,K

BK,1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(109)

in which case |�̃(Ã + d̃A)〉− |�̃(Ã)〉 = dt |	p=0,K (B; A)〉 +
O(dt2) with Bs1s2...sK = B1,2s1B

s2
2,3 . . . B

sK

K−1,K .

C. Towards a Fock-space construction

As a variational Ansatz, the generalized subspaces Tp,K

are still only useful for studying elementary excitations with a
single-particle-like nature, which might include bound states
of several fundamental particles of the system. If we want to
be able to describe true unbound multiparticle excitations,
we need a different variational Ansatz that supports two
independent perturbations of the ground state that can be
arbitrarily far apart. There is not much interesting information
in the energy of multiparticle states, as we expect that in a
system with local interactions, we should be able to add the
momentum (modulus 2π ) and energy of any two eigenstates
and find a new eigenstate at that point in the energy-momentum
diagram. For finite systems, there can be finite-size corrections
to the energy, but this relation should hold true exactly in the
thermodynamic limit, as long as the number of excitations
remains finite (i.e., the density of excitations is zero). However,
being able to describe multiparticle excitations is relevant for a
more accurate description of dynamic correlation functions, as
well as to understand the scattering properties of elementary
particles and thus the interactions that exist between them.
Eventually, the goal is to create a new Fock space on top
of the interacting MPS vacuum, in which we can build an
effective Hamiltonian that describes the low-energy behavior
of the system. This effective Hamiltonian can then be used to
study the thermodynamics of the system, i.e., the behavior of
the system under all kinds of perturbations, such as adding a
nonzero temperature, applying external fields, quenching some
parameters.

We now assume that we have a complete description of
all elementary particles in the system, labeled by some index
α, in terms of states |	p,K (B(α))〉, which are normalized as

〈	p,K (B
(α)

)|	p′,K (B(β))〉 = 2πδ(p − p′)δα,β . In general, the
tensors B(α) can depend on the momentum p. However, we
expect the momentum dependence to be weak if we expand
around minima in the dispersion relation ω(α)(p), and we
ignore this subtlety in the present discussion. The span of these
states thus defines our single-particle space. The logical next
step is the definition of two-particle space. The double tangent
space T(2) that we encountered in the context of Sec. IV C
seemed to have the correct structure to capture two independent
disturbances of the ground state. We can now generalize this
for tensors B acting on K consecutive sites by first defining
for every n2 > n1 + K the states

|ϒn1,n2,K (B1,B2)〉 = v
†
L

(∏
k<n1

Ask

)
B

sn1 ...sn1+K−1

1

×
( ∏

n1+K�k<n2

Ask

)
B

sn2 ...sn2+K−1

2

×
( ∏

n2+K�k

Ask

)
vR |s〉. (110)

To construct a full basis of states that is complete but not
overcomplete, we have started from the set of states where the
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perturbations encoded by B1 and B2 are localized on sites n1

and n2, respectively. It is clear that we can only define these
states for n2 > n1 + K or, alternatively, if we would like to
put B2 on a position n2 < n1 − K , we should just write it as
|ϒn2,n1,K (B2,B1)〉. Hence, we do not expect to be able to label
the double tangent space by two completely independent mo-
mentum numbers without overcounting. However, by setting
n1 = n and n2 = n + m, we can take the Fourier transform
with respect to n and obtain a new basis of states with a
well-defined total momentum (for m � K)

|ϒp,m,K (B1,B2)〉 =
∑
n∈Z

eipnv
†
L

(∏
k<n

Ask

)
B

sn...sn+K−1
1

×
( ∏

n+K<k<m

Ask

)
B

sn2 ...sn2+K

2

×
( ∏

n2+K<k

Ask

)
vR |s〉. (111)

For fixed p and for all m � K , these states span a space T(2)
p,K .

They should be considered as the product state basis because,
by taking linear combinations of states |ϒp,m,K (B1,B2)〉 with
different B1’s and B2’s, we will create “entanglement” between
the two excitations.

So far, we have only fixed the total momentum, whereas
ideally, we would like to put both excitation in an individual
momentum superposition by building a state such as

|p − q,q,α,β〉 =
∑
m>K

eiqm
∣∣ϒp,m,K (B(α)

1 ,B
(β)
2

〉
. (112)

The asymptotic part of this state (m � K) looks like an
excitation B(α) with momentum p − p2 and an excitation B(β)

with momentum q. One can indeed show that the energy of
this state is dominated by the asymptotic part and is given
by ω(α)(p − q) + ω(β)K (q). However, this is in itself not a
good eigenstate since it is not even allowed to transform
the (internal) position coordinate m, which is only labeling
sites on a half infinite lattice m > K , to momentum space.
A proper approximation for a stationary scattering state of
the full Hamiltonian has an asymptotic contribution of every
other pair of particles with total momentum p and the
same energy, in particular from the state |q,p − q,β,α〉. The
coefficients with respect to the different states appearing in
the asymptotic region determine the content of the scattering
matrix. In one dimension, the scattering matrix is determined
by the simultaneous effect of interactions and statistics and
there is no unambiguous way to distinguish between both.
Free particles with one type of statistics have an equivalent
description as interacting particles with a different type of
statistics. In any way, to get an accurate approximation of the
scattering coefficients, we also need an accurate description
of the scattering state in the regime where the two excitations

are close to each other and are interacting with each other.
Given that the T(2)

p,K corresponds to a half infinite lattice,
where every site contains the internal degrees of freedom of
the two excitations B1 and B2, the subspace T(2)

p,K is infinite
dimensional and there is no straightforward way to diagonalize
the Hamiltonian. We discuss how to tackle this scattering
problem elsewhere.99

On an intuitive level, it is clear that putting more and more
B tensors into the uMPS |�(A)〉 corresponds to having more
particles. However, several complications have to be taken into
account. In order to build a consistent framework, we have
to check that the vacuum and the elementary excitations are
good approximations of true eigenstates of the Hamiltonian.
This requires that, e.g., the Hamiltonian does not (or only very
weakly) couples the two-particle space with the single-particle
space [or even with the vacuum state, which is expressed by
the matrices K(p) in Eq. (87)]. If this is the case, then we
can start building a Fock space in which we can construct
an effective Hamiltonian describing the interactions between
the elementary excitations of the system. The two-particle
interaction is already computed in Ref. 99 in order to solve the
scattering problem. There can also be three-particle couplings,
or couplings that do not respect the particle number and
transform three excitations into two excitations, and so forth.
To know how these excitations couple to physical perturbations
of the system, it is also required to identify the excitations
with the action of physical operators, such that |	p,K (B(α)〉 =
Â

(α)†
p |�(A)〉. It can be shown that, if K is equal to or larger

than the injectivity length �,100 then we can always find an
operator Â

(α)†
p that creates the excitation by acting on exactly

K sites. If K < �, the corresponding operator might have to act
on � sites. If we want to identify Â

(α)†
p with a creation operator,

we should also require that Â(α)
p annihilate the ground state.

This requires that EB
AA...A (with K matrices A) is zero, which

is completely different and not compatible with the kind of
gauge fixing conditions that we have been imposing so far. It
remains an open question as to whether we can build such a
theory consistently and efficiently.

VIII. SUMMARY

In this section, we summarize some of the key concepts and
accompanying equations that were discussed throughout this
paper. While the implementational details will be discussed in
greater detail elsewhere,40 this summary sketches a workflow
by which one should be able to implement the different
algorithms required to reproduce the results presented in this
paper. To facilitate the interpretation of the central equations,
we now present them in a graphical format, which is well
known within the tensor network community. Our starting
point is the notion of a uniform MPS, discussed in Sec. II. It
is given by

A A A A A A A A. . .

.

. . .|Ψ(A) =

We have not drawn the boundary vectors, as they are completely irrelevant anyway. The main properties that we need of the
uniform MPS are its transfer matrix E, whose largest eigenvalue should be 1 for reasons of normalization, and the corresponding
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left and right eigenvectors l and r corresponding to this eigenvalue. They are represented as

Tensors A with the physical index pointing upwards are automatically implied to be complex conjugated; this will not be denoted
explicitly in the graphical representation. If the uniform MPS |�(A)〉 is injective, all other eigenvalues of the transfer matrix lie
within the unit circle, i.e., their magnitude is smaller than one. In all expectation values of local observables ô, the half infinite
string of transfer matrices to the left and right produce the fixed points l and r , such that these expectation values can be written
as

The first question is how to find a uniform MPS description of the ground state of a given translation-invariant Hamiltonian
Ĥ = ∑

n∈Z T̂ nĥT̂ −n, where ĥ is assumed to be a nearest-neighbor Hamiltonian acting on sites 0 and 1 for reasons of simplicity.
Here, imaginary-time evolution using the TDVP provides an efficient algorithm. The TDVP requires that we introduce the tangent
space of uniform MPS, which consists of the states |	(B; A)〉 = |	0(B; A)〉 given as

Infinitesimal gauge transformations establish an equivalence |	(B̃; A)〉 = |	(B; A)〉 for any B̃ given by

This freedom in the parametrization allows us to restrict to a set of parameters B that satisfy a certain gauge fixing condition,
such as the left or right gauge fixing condition B, represented as

These gauge fixing conditions also express that we have restricted to tangent vectors |	(B; A)〉 ⊥ |�(A)〉 since

hence they can not be imposed for tangent vectors for which 〈�(A)|	(B; A)〉 �= 0. However, for the remainder, we are only
interested in orthogonal tangent vectors |	(B; A)〉 ∈ T⊥. A linear parametrization B = B(X) that automatically satisfies the left
gauge fixing can be obtained by finding an orthonormal basis VL of solutions for the equation below

Here, the thick bond represents an index of dimension D(d − 1), which is the size of the solution space of the first system of
equations. The representation B(X) was constructed such that, with respect to the new variables X, the effective normalization
becomes the unit matrix, i.e.,

The time-dependent variational principle, described in Sec. III, gives a prescription for the direction Ȧ in which A has to be
varied in order to approximate time evolution according to the Schrödinger equation, either real- or imaginary-time evolution
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depending on the presence of a factor i. The optimal direction B is obtained by projection (Ĥ − 〈Ĥ 〉) |�(A)〉 onto the tangent
space of the manifold of uniform MPS, where we always subtract the expectation value of the Hamiltonian with respect to the
current state, in order to avoid infinite phase or normalization factors. The tangent-space projection |	(B(F ))〉 = P̂T⊥Ĥ |�(A)〉
[see Eq. (41)] is then captured by the equation 〈	(B(X))|	(B(F ))〉 = 〈	(B(X))|Ĥ |�(A)〉, ∀ X, which is represented as

By inserting the definition for B(X) and B(F ) and the derivative with respect to X, which effectively opens the indices connected
to X and eliminates X, an explicit expression for F is obtained, from which the corresponding update direction Ȧ = −(i)B(F )
for the tensor A is obtained. This expression contains the pseudoinverse of (1 − E), which was introduced in Sec. II B. For
finding the ground state, one can then integrate this set of coupled nonlinear differential equations using a simple first-order
Euler scheme, or using one of the slightly more advanced schemes discussed in Sec. III E. Note that the TDVP intrinsically stays
within the manifold of uniform MPS with fixed bond dimension. If some application requires a dynamical increase of the bond
dimension, the technique presented in Sec. VII B can be used.

Having found a uniform MPS approximation |�(A)〉 of the ground state of Ĥ , which we now assume to be such that
〈�(A)|Ĥ |�(A)〉 = 0, we now go on to discuss how to study excitations. Hereto, we introduce the larger tangent space with site-
dependent variations B(n), which can be decomposed into momentum sectors by selected B(n) = B exp(ipn) for p ∈ [−π,π ).
In fact, we can even use the slightly more general Ansatz introduced in Sec. VII A, where the perturbation B acts on several sites.
These result in the states

Observing that there is again a parametrization redundancy |	p,K (B)〉 = |	p,K (B̃)〉 given by

we can now restrict to parametrizations B satisfying

for which we also construct a representation B(X) using the
same basis VL defined above. The new set of parameters
X now has a virtual bond of dimension D(d − 1), K − 1
physical indices of dimension d and another virtual bond
of dimension D. This representation is chosen such that
the effective normalization matrix is still the unit matrix.
A variational approximation for the excitation energies is
then obtained by diagonalizing the corresponding effective
Hamiltonian, whose matrix elements can be read from Eq. (70)
for the case of K = 1. For K > 1, this expression becomes
even slightly more complex, but it can still be calculated
using the techniques described in this paper. Topologically
nontrivial excitations such as kinks and domain walls can be

described by using a different tensor Ã on one of both sides
of the perturbation B, where |�(Ã)〉 corresponds to a linearly
independent but equally good ground state (approximation).
The computation of the spectral weight of the variational
excitations |	p,K (B)〉 with respect to some operator ô closely
resembles the computation of the TDVP projection and can be
computed analogously.

IX. CONCLUSIONS AND OUTLOOK

This paper discusses in great detail some recent algorithms
to study the dynamics of quantum lattice systems that rely
on the concept of the tangent space to the manifold of
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uMPS. The need for understanding the uMPS tangent space
arises naturally when applying the TDVP to the manifold
of uMPS, in order to capture time-evolving quantum states
within this manifold. However, it then turns out that the
tangent space is also very convenient in the formulation of
“post-MPS” methods for studying elementary excitations of
the quantum lattice Hamiltonian and to compute spectral
functions. This situation is reminiscent to mean field theory
for fermions (Hartree-Fock) and bosons (Gross-Pitaevskii),
where similar constructions have been well developed and used
extensively.

However, unlike mean field theory, (u)MPS have a refine-
ment parameter D that can be used to improve the ground-state
approximation if necessary, and we have in this paper refrained
from studying whether “post-MPS” also imply corrections to
the ground state. Rather, we assume the uMPS description of
the ground state to be “quasi”-exact, and we want to obtain
a better understanding of the elementary excitations in the
system and the interactions that exist between them. We can
easily generalize the tangent-space Ansatz in order to obtain a
more accurate description of elementary excitations, and have
given an outlook on how we can start building a new Fock space
on top of the MPS vacuum, in which an effective Hamiltonian
can be created that describes the quantum dynamics of the

elementary excitations in the system. The formalism in this
paper should also be applicable to the case of continuous MPS,
as well as to other tensor networks for higher-dimensional
quantum systems. This program should enable us in the long
term to construct an effective description of the low-energy
behavior of strongly interacting quantum systems, which can
be used to describe the complete thermodynamics in the
quantum regime.

Note added. Recently, we learned about Ref. 90 where
related concepts were introduced for MPS on finite lattices
and were compared in detail to similar constructions for
Hartree-Fock theory. The contents of this paper and its relation
to our paper were briefly discussed in Sec. VI.
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70P. E. Dargel, A. Wöllert, A. Honecker, I. P. McCulloch,
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