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We derive a finite-basis-set correction for quasiparticle (QP) energies in the G W approximation and many-body
correlation energies in the random phase approximation. Since the correction requires only knowledge of the
ground-state density distribution, it is straightforward to implement in any plane-wave code and significantly
improves convergence at negligible computational cost. The expression also indicates that QP energies might
converge to the wrong value using the projector augmented wave (PAW) method since the overlap densities of
occupied orbitals and high-energy, plane-wave-like orbitals are inaccurately described. The error is shown to be
related to the incompleteness of the partial waves inside the atomic spheres. It can be avoided by adopting norm-
conserving partial waves. Go W, and G W, results based on such norm-conserving PAW potentials are presented
for a large set of semiconductors and insulators. Accurate extrapolation procedures to the infinite-basis-set limit

and infinite-k-point limit are discussed in detail.
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I. INTRODUCTION

Density functional theory (DFT) does not allow us to
calculate accurate quasiparticle (QP) energies as measured
experimentally in x-ray photoelectron spectroscopy (XPS)
or ultraviolet photoelectron spectroscopy (UPS), although
the Kohn-Sham eigenvalues often show at least qualitative
agreement with the corresponding measurements. In solid
state physics, the standard approach to determine QP energies
is currently the GW approximation often combined with
orbitals from Kohn-Sham DFT calculations, for instance, the
local density approximation (LDA). The GW method was
originally proposed by Hedin [1] and later extensively applied
by the group of Louie [2], following a procedure adopted by
Sham and Schluter for tight-binding models [3] and Strinati,
Mattausch, and Hanke for local-basis-set calculations [4,5].
For recent reviews, we refer to Refs. [6-9], and for a recent
rederivation we refer to Ref. [10]. With the advances in
computer power over the last two decades, the GW method
can now be applied to systems containing hundred atoms, and
with some approximations, calculations for several hundred
atoms are possible or will be possible in the near future.

Remarkably, even after several decades of research, publi-
cations with technically converged QP energies are rare and
seem to pose a significant challenge to theory. The most
problematic issue is the slow convergence of the QP energies
with respect to the basis-set size [11-13]. That this slow
convergence causes serious errors has not been realized for
a long time, with most researchers using a few hundred
unoccupied orbitals per atom in the calculation of the Green’s
function. However, the recent work of Shih er al. on ZnO
suggests that convergence can be so slow that thousands
of orbitals might be required for accurate predictions [14].
Furthermore, care must be taken to reach convergence with
respect to both the basis set for the orbitals and the basis
set for the response function [14]. Although the ZnO results
were somewhat exaggerating the dependence on the number of
orbitals and the final reported values for the band gap of ZnO
were not very accurate, partly because of the use of a simplified
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plasmon-pole model [15], the calculations still mark a turning
point: whenever highly accurate results are required for the QP
energies, huge basis sets are needed to obtain them.

The situation is very similar to quantum chemistry (QC)
calculations, where convergence of the total energies (and
excitation energies) is also exceedingly slow with the basis-
set size. In the QC community, it is well established that
the interelectron cusp, the dependence of the many-electron
wave function on the distance of two electrons, causes slow
convergence [16-19]. As a consequence of a wave-function
kink at zero distance, absolute correlation energies show a
convergence proportional to the inverse of the number of basis
functions [20]. A similar slow convergence was observed for
the correlation energy in the random phase approximation
(RPA). Based on calculations using the Lindhard dielectric
function but without explicit derivations, Harl and Kresse
suggested that the RPA correlation energy converges like 1 /N,
where N is the plane-wave basis-set size [21]. For MP2 total
energies, a similar behavior was derived by Shepherd et al.,
closely paralleling the finding for quantum chemistry basis sets
[22]. Gulans explicitly derived the same limiting behavior for
the RPA correlation energy relying on the jellium model, and
he furthermore showed that a similar 1/N convergence must
be expected for the QP energies in solids [23,24]. Although
his derivation suggests that the origin of the slow convergence
of QP energies and total correlation energies is related, how
exactly the cusp condition appears in methods based on
one-electron Green’s functions is somewhat “clouded.” In fact,
in one-electron Green’s function approaches, the self-energy
needs to account for the correlation hole or, equivalently, the
screening charge, which relates at short distances to the cusp
condition. Another way to understand the slow convergence
of QP energies is that they essentially represent the difference
between two total energy calculations, each with a 1/N
convergence.

In this work, we derive a closed expression for the MP2
and RPA correlation energy and self-energy in the limit of
high-energy states (plane waves with large momentum). The
derivation does not rely on an explicit functional form for
the dielectric function for the jellium electron gas. We only
assume that for high energies, well above the vacuum level, the
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one-electron states become essentially plane waves [25,26].
The correction turns out to depend on the charge density
distribution alone. Interestingly, the present derivation also
shows that the static Coulomb-hole plus screened-exchange
(COHSEX) approximation overestimates the high-energy
contributions to the QP energies by a factor of 2, as observed
recently by Kang and Hybertsen [27]. Furthermore, we show
that in order to obtain converged values, one needs to increase
both the basis set for the orbitals, as well as the basis set for
the response function.

Unfortunately, the present derivation also highlights a
severe problem for ultrasoft pseudopotentials and the related
projector augmented wave potentials when they fail to con-
serve the norm in the plane-wave representation. For ground-
state properties, violation of the norm is usually eliminated
by adding appropriate augmentation or compensation charges
centered at each atomic site. However, such a correction is
missing for orbitals at high energies that are essentially plane
waves with large momentum. As a result, the overlap densities
of occupied orbitals and high-energy unoccupied orbitals are
not properly described. A simple solution to this problem is
to construct potentials that are norm conserving. In this work,
this is achieved by determining projector augmented wave
potentials with norm-conserving partial waves. We present
tests for ZnO, GaAs, and AlAs that indicate that QP energies
extrapolated to the infinite-basis-set limit are then independent
of the detailed construction of the potential. The final gaps
agree very well with previous calculations of Friedrich et al.
for ZnO [28]. Motivated by this result, we apply the present
procedure to 24 semiconductors and insulators and present
GoW, as well as GW, calculations based on LDA and
PBE (Perdew-Burke-Ernzerhof) [29] orbitals and energies. We
believe that these results are technically well converged and
can serve as a stringent benchmark for future G W calculations.

II. THEORY

In the following sections, we study the asymptotic con-
vergence of the total many-electron correlation energy (in
Sec. IT A) and self-energy (in Sec. II C). Specifically, we derive
the contributions from plane waves with large momentum in
the auxiliary basis set that is used to represent the overlap
charge densities or the response function. By summing up all
contributions between a finite and infinite cutoff, we obtain
an estimate of the error made in practical calculations when a
finite auxiliary basis set is used. In the derivation we assume
that the orbital basis set is complete and all unoccupied states
are included. Our crucial approximation is that the high-energy
unoccupied states can be represented by plane waves. This
is usually a good approximation since at high energies, the
kinetic energy term —A /2 will be the dominant part of the
Hamiltonian so that the orbitals are well approximated by plane
waves [25,26]. Our derivation first concentrates on the total
correlation energies in the second-order approximation (direct
term in MP2) since the essential results are easy to grasp.
This derivation closely parallels the derivation for the jellium
electron gas in Ref. [22]. Then, we discuss the shortcomings
of the PAW method, and finally we move on to the self-energy.
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A. Correlation energy in second-order
perturbation theory (MP2)

We start by deriving the convergence behavior of the direct
MP2 (dMP2) energy. The result, however, also applies to the
convergence of the RPA energy, which reduces to the direct
MP2 energy in the limit of large wave vectors. Specifically, for
large wave vectors G, the independent particle polarizability
Xo becomes small and the RPA correlation energy (here v is
the Coulomb operator)

ER* = Te[L(xov)® + $0oov) + -+ ]~ Tr [ (xov)?]

reduces to the leading-order dMP2 term. The relation between
the dMP2 and RPA energy has also been discussed in Ref. [30].
We also note that even though the total dMP2 energy diverges
for systems without a gap in the thermodynamic limit, the
contribution of large wave vectors G to the energy is finite.
Therefore, our derivation holds also for systems with vanishing
gap.

The direct contribution to the MP2 correlation energy for
a non-spin-polarized system can be written as (generalization
to the spin-polarized case is straightforward)
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Here and throughout the paper we use atomic units. The spin
coordinates have been summed over, so that the summation
over orbitals is over spatial orbitals only. The integers i,j
and a,b are indices for occupied and unoccupied orbitals,
respectively, and ;, €}, . . . denote the corresponding eigenen-
ergies. The vectors G and G’ are three-dimensional reciprocal
lattice vectors of a cell with volume 2. This auxiliary basis
set is used to represent density related quantities, and in
practical calculations this basis set is restricted by imposing
a plane-wave cutoff EX, [ENCUTGW in the Vienna ab initio
simulation package (VASP)] to improve the efficiency of the
calculations. The quantity

(bl = Glj) = / Y, (Y0 exp(—iG-r)dr  (2)
Q

is the overlap density of the orbitals (r|b) = y,(r) and (r|j) =
¥ ;(r) represented in this auxiliary plane-wave basis.

We now determine the contribution E™MF2(G/,G) to the
direct MP2 energy from auxiliary basis states G and G’ that
have no overlap with occupied orbitals. Specifically, we want
to calculate the approximate correlation energy from plane
waves G and G’ that observe

(il =Glj) =0 3

for all occupied orbitals i, j. Later, for QP calculations, we
will extend this condition to a few unoccupied states of
interest. These plane-wave components are obviously not
relevant for the description of the density originating from
occupied Kohn-Sham orbitals, but as we show below these
plane waves still contribute to the many-body correlation
energy and self-energy.
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In a first step, we allow the indices a and b to run over
all states instead of the unoccupied states in Eq. (1) [Eq. (3)
allows for this “simplification’]:

occ all

EG,G) = —2ZZz|G|a (a] — G’|l>

ij ab

QG/2

Glj) vi% 1
/ QG%e,tep—& —&

“

For brevity, the superscript dAMP2 will be dropped from now on.
Second, we assume that high-energy unoccupied states a are
essentially plane waves of the form v,(r) = \/Lﬁ exp(iG, - 1)

with the eigenenergies &, = G2/2. In this case, the quantity
(i|Gla){a| — G'|i) is only sizable if G, & —G and G, =~ —G’
and (j|G'|b)(b| — G|j) will be non-negligible if G, ~ —G’
and G, ~ —G. This follows from the assumption that the
occupied states have predominantly components at small
wave vectors. Therefore, we can approximate &, + &, ~
(G? + G™)/2. Moreover, to simplify the formula, we neglect
the dependence on the energies of occupied states compared
to those of the unoccupied states, so that

~ (G*+G%)2. 5)

This approximation is also correct for the important diagonal
components G = G’. Once rid of the eigenvalues ¢, the
resolution of identity ) |a)(a| =1 can be used leading to
a much simpler expression

x (jIG'|b) (D]

&at&p— & —€&
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We can also write this as
occ 2
EG.G)=-2) p(G- G’)Epj(c’ >G2 G
ij
@)

where the Fourier transformed density of the orbital i is defined
as
1 .
pi(G) = 5 /Q ¥ ()Y (r) exp(iG - r)dr. (3)
Since the total density can be calculated as p(G) =
23" pi(G), we obtain the first central result of this work:

4 Am 2
This equation approximates the contribution to the correlation
energy from two auxiliary plane-wave basis-set functions with
wave vectors G and G'. As before, “auxiliary” here refers to
the basis set used for the overlap charge density. The equation
can be evaluated easily and at modest cost in any plane-wave
code and can be used to estimate the incompleteness error.

In practical calculations, the auxiliary basis set is restricted
by a cutoff energy EX,, where basis functions with energies
|G|?/2 > EX, are omitted. The resulting error can be estimated

1
E(G,G) = —510(G - G)? ©)
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by summing up all the contributions E(G,G’) for G and G’
above the cutoff Gy = +/2EL,:

AE= ) > EGG). (10)

|G|>Geuw |G'|>Gent

We perform this summation by changing from the variables G
and G’ to their average G” = (G + G’)/2 and their difference
g = G — G'. The relevant values of g are limited in the recip-
rocal space by the spread of the density and invoking Eq. (3)
one can make the assumption that |g| < |G”|. Performing this
substitution and neglecting g in the parts originating from the
Coulomb interaction and the eigenenergies leads to

1 (471)2
AE~ =23 lp@F Y o (11)
g |G"|>Geut

Summing over all plane waves with |G”| > Gy is trivial and
yields

AE = Z|p<g>| 92 Moo Z|p<g>| (12)

where the last equation involves the number of plane waves
Npyw in the cutoff sphere with radius Gey. The formula is
further simplified in the special case of the jellium electron
gas (UEG), where p(G — G') = 8(G — G')p(0). In this case,

2 p?Q* 2 Nj
972 Npw 972 Npy'

3G3

cut

AEVEG ~

13)

where N, is the total number of electrons in the cell (including
spin).

The final two equations show that the leading-order error of
the correlation energy decays asymptotically with the inverse
of the number of plane waves N,y in the auxiliary basis
set. The rate is determined by the Fourier components of
the ground-state density. It is important to note that this
slow convergence of the MP2 energies is well established for
quantum chemistry basis sets (Gaussian-type orbitals) with
exactly the same one over basis-set size convergence [20].
Furthermore, it has been shown that the slow convergence is
related to the description of the two-electron cusp condition
[16-19,23]. This condition leads to a kink in the many-electron
wave function W(ry,r,rs, ...): when any two coordinates r;
and r; coincide, the many-electron wave function exhibits a
discontinuity in the slope, which leads exactly to the basis-set
convergence determined above.

The slow convergence originates from the fact that the
density enters at wave vectors g = G — G’ in the correlation
energy since large wave vectors of the auxiliary basis set are
folded back to wave vectors around g = 0 by “interaction”
with high-lying plane-wave-like orbitals. In other words,
even auxiliary basis states not relevant for the description of
ground-state densities [compare Eq. (3)] will contribute to the
many-electron correlation energy. Since the correlation energy
correction depends on the charge density distribution, one can
also not assume that this contribution will cause a trivial shift
of the total correlation energy. Obviously, when the density
changes, the convergence rate will be altered as well.

Looking back at the derivation, a second related issue
becomes obvious. We have performed the derivation assuming
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a finite auxiliary basis set for the densities and a complete
set of unoccupied orbitals. However, one can also perform
the derivation by assuming an infinite cutoff on the auxiliary
density basis set but restricting the number of unoccupied
states. The final error expression is identical: if the basis set
for the orbitals is truncated at GEE{, or if the basis for the
overlap densities is truncated at G%,, an error proportional
to 1/G3, is introduced with Gy = min(Ghy,GZ). It is
therefore important to increase the basis set for the one-
electron orbitals, the number of unoccupied orbitals, and the
auxiliary basis set for the overlap charge densities at a similar
rate.

We also note that Eq. (12) gives the leading order of the
error as 1/Npy. In practical RPA or MP2 calculations, this
error is approximately corrected for using extrapolation [21].
As discussed by Gulans, the next order correction falls off
like Np_w5 & [23]. For UEG, this order could be recovered if
the energies of the occupied states were taken into account.
The next order follows NPTJ /3 and such a dependence of the
MP2 energy was found by Griineis et al. after applying F12

corrections [31]. Presumably, the F12 corrections treat the
error of the order N;WS 3 exactly by including both the energies
and basis-set representation of the occupied states. In principle,
one can improve the accuracy of the present scheme by keeping
the energies of the occupied states in the final equation; we,

however, leave the explicit derivation for future work.

B. Shortcomings of the PAW method:
Completeness issues for MP2

In the PAW method, the all-electron orbitals |i) are related
to the pseudopart |i) by a linear relation

)+ Z(|oc

|iaug)

)N Pali) (14)

where (p, | is an atom-centered projector onto an atomic orbital
o with corresponding all-electron and pseudopartial waves
(rla) = ¢o(r) and (r|@) = @, (r), respectively. One-electron
properties such as the overlap charge density (a|r)(r|i) =
¥ (r)y;(r) would, in principle, involve four terms

(alr)(rli) = (@lr)(rli) + (@) (rli*e)
+ (@™ [e)(r|i) + (@lr)(rli*e).

The crucial assumption in the PAW method is that the set of
partial waves is complete. As discussed in Ref. [32], this allows
us to drop the final two “mixed” terms and the overlap charge
density simplifies to

(alr){r|i) ~ (alr)(r|i)

+ ) (@l pa)(elr)(r|B) —
ap

(@lr)(rlB))(ppli).

s)

This simplification is crucial for the efficiency of the PAW
method. It is easy to achieve completeness in the space of
occupied orbitals, however, it is, in practice, impossible to
achieve completeness for orbitals at very high energies. This
is the source of an important error.
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Returning to Eq. (4), the problem of the PAW method is
easy to understand. If a is a plane wave with large momentum
Yu(r) = \/Lﬁ exp(iG, - 1), the projection (a|p,) becomes very
small since the projectors | p,) span only the occupied orbitals
and are limited in Fourier space ((G,|py) =~ 0). The complete-
ness relation is then violated, and, in principle, the mixed terms
discussed above should be reintroduced to alleviate the issue.
As long as the mixed terms are not included, the augmentation
terms are effectively zero, so that (i |G|a)(a| — G'|i) becomes
identical to ({|G|a){d| — G’|{). In this case, the correlation
energy in the limit of large wave vectors G and G’ becomes

, . o4 4w 1
EG.G)=-1pGC -6 rmargr (10
where §(G — G’) is the Fourier transformed ground-state

density neglecting any charge augmentation. While the energy
still converges as 1/N,y, the convergence rate, as well as the
converged correlation energy, possess an error. The error can
be quite sizable, especially for d elements where the norm
violation can be considerable: up to 80% for late 3d elements
such as Zn, Ga, or Cu. The error will most significantly appear
in the total value of the correlation energy. Its importance for
relative energies should be smaller, although it is not negligible
for 3d elements, as discussed in more detail in Appendix A.

C. Second-order self-energy contribution at large G vectors

We now derive the limiting behavior of the quasiparticle
corrections within the GW approximation to the electron self-
energy. We follow the same route as for the dMP2 correlation
energy by approximating the high-energy unoccupied states by
plane waves. Again, we assume a complete set of unoccupied
states and a finite auxiliary basis set for the overlap charge
density and related response function. However, similar results
are obtained when a finite set of unoccupied states and a
complete auxiliary basis set is used.

The usual definition for the self-energy in the GW approx-
imation is

Y(w) = n/da) exp(—idw)G(w — 0 YW(w'), (17)

with the Green’s function

all

> (Gln) (n|G')

G(G,G,0) = —,
w—&; F1N

(18)

where § and 7 are positive infinitesimals, and the minus sign
applies to occupied states and the plus sign to the unoccupied
ones. As before, we use the second-order approximation, so
that the screened interaction is W = v + v xov, where the first
term is the exchange contribution and the second one is the
correlation part W, = v xov. In the following, we consider only
the correlation part, which can be written as (from now on we
will drop the functional parameters G,G’, and w)

L 247 4 N (il = Gla){alG)i)
We = QGzGQZZ(a)—i—e, — &, +in
_{al = G|i>(i|G’Ia>>

w+e,—¢& —in

19)
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Inserting the expressions for G and W, into Eq. (17), one
obtains

i 2 ’ . ’
= R dw exp(—idw’)
(G|n)(n|G') 4m 4x
x Za)—a)’—zzn:|:ir;G2G’2
(a] — Gli)(iIG'|a>>

o +e,—& —in

n

(i| — Gla)(a|G'li)
. Z(w/+ei—8a+in a

i,a

(20)

The self-energy integral can now be calculated analytically via
contour integration considering the poles of the integrand. As
we choose to close the contour in the lower half, only the poles
with a negative imaginary part will contribute. There are two
distinct contributions. The first originates from the poles in the
Green’s function at the energies of the occupied states

o' =w—¢,—in 21

and gives the screened exchange (SEX) contribution (we drop
n from the expressions after integration)

occ

sSEXQ) _ _ 2 4T 4m
TOQ2G2G2

(i|—Gla)(a|G'|i)
x Z(a)—en—i—si — &4 B

i,a

(Gln)(n|G')

w—&,+&,— &
(22)

The second contribution comes from the poles of W located at
the excitation energies of the noninteracting response function

o = —(g — &, +in). (23)
This gives the Coulomb hole (COH) contribution to the self-
energy

scone _ 24T 4r &

S gr L (GInnl6)

« 3 (iI—GIaHaIG/Ii). 24)

o Wt & — &= én
These expressions are equivalent to the ones derived by
Grtineis et al. for MP2 quasiparticle energies [33]. Note, how-
ever, that we have kept the first term in the SEX contribution
and the part where n € occ in the COH contribution. These
two terms are identical except for an opposite sign and would
subtract out upon adding the SEX and COH contributions.

We now consider the contribution of the high momentum
wave vectors G and G’. When the SEX term is evaluated for an
orbital m with eigenenergy &,,, (m|Z5EX®|m), the first term
on the right-hand side of Eq. (22) contains

occ
> m| = Gln) (n|G'|m).
n
Here, n corresponds to an occupied state, and m corresponds to
an occupied state or one just above the Fermi level. According
to our assumption (3), at large G and G’ the corresponding

(al—GIi)(iIG’Ia>> _
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contribution is zero. The SEX term, therefore, does converge
rapidly with respect to the basis-set size.

The COH contribution, however, involves a summation over
all states, and the matrix element of self-energy reads as

2 4r 4r &

(m| 2D e)lm) = o5 =5

G Gn 2 (ml = GIn) (|G m)

« 3 (il = Gla){a|G'li) 25)

ia Em T & — & — &y

For large G vectors, we can modify this expression in the
same way as in the MP2 total energy case, so that for orbital
m, the approximate contribution to the QP correction can be
written as
%4 47 2
where 0,,(G — G’) is the density of orbital m in reciprocal
space, including a spin factor of 2. This is the second central
result, and the formal equivalence to the MP2 total energy
contribution is obvious. In fact, one could have derived this
equation by applying Koopmans’ theorem to the total energy
expression (9).

After performing the summation over the omitted G
vectors, the correction for a finite auxiliary basis set can be
written as

1
Ag, = _Epm(G - G/) ;O(G/ - G) (26)

peo = - 22 > ou(@p(—2) @7

m 97T2 pr - m .
We note that we have again assumed that the density in
reciprocal space has nonzero components only for |g| < Gy.
The validity of this approximation will, in principle, differ for
each individual state. Indeed, states localized in real space are
more spread in reciprocal space and for such states the terms
beyond the leading order might be important, as we will show
later in Sec. IV. In the case of the jellium electron gas, the
equation simplifies to

AE[OLUEG _ 4 Nel
m = b .
972 Npw

(28)

Here and above, N, is the number of auxiliary basis-set
functions used to describe overlap densities. A similar result
is obtained for the case when the number of unoccupied states
is limited and the auxiliary basis set is large, Npy is then the
number of unoccupied states.

The implications of Eq. (27) are analogous to the MP2
case, and here we only briefly reiterate the main points. The
quasiparticle energies will converge with the inverse of Npy
and, in fact, such convergence behavior was observed in GW
calculations before [13,28]. This leading order, as well as
higher-order terms, were derived by Gulans for the jellium
electron gas and by Schindlmayr for a model system of two
electrons on a sphere [23,34]. As also discussed by Gulans
and Schindlmayr, when calculating quasiparticle gaps, the
leading order 1/Np,, might accidentally subtract out and the
calculated gap might exhibit a faster convergence. To observe
the 1/N,y convergence and to converge to the correct value,
both the number of unoccupied bands, the corresponding
orbital basis set, and the size of the response function basis
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set need to be increased. We also note that, when performing
GW calculations, it is still quite common to fix the size of
the response function matrix and converge only with respect
to the unoccupied states. This, however, leads to a false
convergence, as demonstrated by Shih et al. and Friedrich
et al. [14,28]. Finally, we note that the derivation can be
also used to derive the asymptotic convergence of the static
COHSEX approximation, which is given in Appendix B. The
derivation shows that static COHSEX overestimates the large
G contributions by a factor of 2.

D. Shortcomings of the PAW method:
Completeness issues for GW

There is very little to add compared to the previous
discussion on the correlation energy. For large wave vectors
G and G', the exact contribution to the QP correction for the
state m is given by Eq. (26). However, in the PAW method, we
will observe only the pseudized contribution

AZ, = 15 G- G G — 6T (29)

m= T G2’ GG +G?
Contributions from the augmentation charges are again miss-
ing since high-energy states are not picked up by the projectors.
In principle, it is possible to correct for this error a posteriori
by calculating the exact term (26) and subtracting the one
effectively used in the PAW approximation. In the present
case, this correction has not been applied.

Instead, Eq. (26) suggests a simple alternative procedure. If
the pseudized density o(g) has the correct norm, both p(g) and
p(g) will exactly agree at g = 0, and approximately at larger
wave vectors. Hence, norm conservation should help to obtain
areasonable approximation for the self-energy. In other words,
if the norm of the pseudized partial waves and all-electron
partial waves are identical, we expect smaller error than if the
norm is not conserved. This conjecture will be validated by
the tests shown in Sec. IV A.

III. COMPUTATIONAL DETAILS

For the GW calculations presented here, all PAW potentials
apply approximately norm-conserving partial waves (a small
norm violation of up to 10%-20% was allowed for some
cases). As discussed in the previous section, such potentials
should yield an accurate description of the correlation energy
and self-energy even at very large wave vectors, corresponding
to rapid variations in space. To construct these approximately
norm-conserving partial waves, the following strategies were
adopted. (i) First, non-norm-conserving pseudopartial waves
were used, and it was attempted to set the core radius such that
the pseudopartial wave ¢, (r) possesses the same norm as the
all-electron partial wave ¢, (r) within a sphere around the atom
[see Eq. (14)]. (ii) If this yielded too hard potentials or too large
core radii, a norm-conserving pseudopartial wave ¢, (r) was
chosen. Table I reports the final core radii for all considered
elements. Generally small core radii (below 1.6 a.u.) indicate
that option (i) was chosen, whereas larger core radii indicate
that option (ii) was used. The same potentials have been
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TABLE I. PAW potentials used in this work. The columns r, ,, 4 ¢
specify the core radii for each angular quantum number in a.u. The
“default” plane-wave cutoff energy E'y for the orbitals is specified
in eV. Column “local” specifies the chosen local potential. This is
usually the all-electron potential replaced by a soft approximation

inside the specified core radius or the f potential.

I I, Iy Iy local EPV

B 1.10 1.10 1.10 d 700
C 1.00 1.10 1.10 0.8 740
N 0.90 1.10 1.10 0.9 755
(0] 1.00 1.10 1.10 0.9 765
Mg 1.15 1.65 1.65 1.2 821
Al 1.75 2.00 1.80 2.00 1.4 571
Si 1.70 1.95 1.70 2.00 1.4 609
1.70 1.95 1.70 2.00 1.4 616

S 1.23 1.35 1.70 1.80 f 486
Zn 1.27 1.70 1.90 1.90 1.2 802
Ga 1.23 1.70 1.90 1.90 1.3 801
Ge 1.18 1.70 1.90 1.90 1.3 807
As 1.14 1.54 2.20 1.90 1.3 613
Se 1.10 1.40 2.30 1.90 1.3 571
Cd 1.70 1.90 2.10 1.90 1.3 657
In 1.66 2.10 2.30 1.90 1.3 582
Sb 1.56 1.90 2.30 1.90 1.2 561
Te 1.51 1.82 2.40 1.90 1.4 617

also applied in our recent work using vertex corrected GW
calculations [35].

The most shallow core states were treated as valence for all
elements, except for boron, carbon, nitrogen, oxygen, fluorine,
and sulfur. In these cases, the core states are well below 10 Ry,
and they are very well localized. Unfreezing them yielded very
small changes in test calculations. For 3d elements, as well as
Ga, Ge, As, and Se, the 3s, 3p, and 3d states were treated as
valence and for 4d elements, as well as In, Sb, and Te, the
4s, 4p, and 4d states were treated as valence. Usually, three
partial waves were used for each angular quantum number /.
One partial wave was placed at the uppermost core state, one at
the binding energy of the valence state in the atom, and a third
projector about 20 Ry above the vacuum level. This guarantees
excellent high-energy scattering properties up to about 30 Ry.
Beyond 30 Ry, however, no projectors and partial waves are
available so that plane waves beyond 30 Ry are not properly
picked up by the projectors p,. These are the energies where
norm conservation should help.

The plane-wave cutoff was chosen to be the maximum
EP of all elements in the considered material. To determine
basis-set converged GW values, the plane-wave cutoff Eb
was systematically increased by a factor of 1.25 and 1.587,
corresponding to an increase of the number of plane waves
Npw by a factor 1.4 and 2, respectively. The results were
then extrapolated to the infinite-basis-set limit, assuming
that the QP energies converge like (1/E%)*? = 1/N,,. For
sufficiently large plane-wave cutoffs, this behavior was strictly
observed for all materials. However, as shown below for the
example of ZnO, this behavior sets in only at very high
plane-wave cutoffs for 3d states. This implies that the 3d states
might have an error of about 100 meV (errors are smaller for

075125-6



PREDICTIVE GW CALCULATIONS USING PLANE ...

4d and also for the somewhat problematic 2p states). The
cutoff for the response function was set to half the plane-wave
cutoff for the orbitals. Correct asymptotic convergence was
only observed if both the plane-wave cutoffs for the orbitals
and the response function were increased simultaneously.

The convergence behavior of the QP energies with respect
to the basis-set size depends only weakly on the k-point set
used. Therefore, to reduce the overall computational cost, we
used 3 x 3 x 3 k points to obtain a basis-set size correction
as the difference of the basis-set converged values and data
obtained with a smaller basis-set size. We then added this
correction to the results calculated with a smaller basis-set
size using 6 x 6 x 6 k points, e.g.,

Eo (6 X6 X 6)~x Eq(6 X6 x6)— Eoq(3x3x3)
+ Eoo(3 x 3 x 3).

Here, E is a QP energy extrapolated to the infinite basis
set, and E.q is the QP energy calculated with a reduced basis
set. The extrapolation is based on the observation that the
contributions from large wave vectors G converge rapidly with
k points and are accurately modeled using coarse k-point grids.
We, however, note that the calculations with dense k-point
grids are performed at what one would usually consider to be
well-converged GW calculations (half of the orbitals spanned
by the orbital basis set, and cutoff of 240-eV for the response
function basis set).

The GW calculations presented here have been performed
using the fully frequency-dependent version as described in
Refs. [36,37]. The QP energies were determined by lineariza-
ti%n of the self-energy around the original LDA eigenvalue
E nk*

EQ = EY + ZuRe[(YuklT + Voo + Vi
+ Z(EQ) W) — EX (30)

where the renormalization factor Z, is calculated as

9 -1
Zpx = (1 ~ Re{Yul 7= 2(w)| |%k)> - GD

For the GW, case, the independent particle screening x that
is used to determine Wy = v + vxov + ... is kept fixed at
the level of DFT, but the eigenvalues in the Green’s function
are updated until convergence is reached. In practice, good
self-consistency is reached after four iterations. Note that we
also update the occupancies and Hartree potential in the course
of the iterations, which changes the results slightly for those
materials where the band gap is originally inverted in the DFT
calculations (see following).

The final technical detail concerns the treatment of the
augmentation term on the right-hand side of Eq. (15). It is
approximated by pseudized augmentation functions leading to
(38]

{alr)(rli) = Y (®)Y:(r)

~ Pr P + Y (dlpa) Qup(®)(ppli).  (32)
af

The pseudized augmentation density Qaﬂ(r) is evaluated in
real space and constructed to closely reproduce the exact
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all-electron quantity. This is achieved by imposing two
constraints: (i) Qaﬁ(r) must reproduce the multipoles of the
exact augmentation charge density Qug(r) = ¢;(r)dp(r) —
(]3; (r)qS,g (r), and (ii) the Fourier transform of Q, and Qaﬂ have
to match up to a chosen plane-wave component. The second
condition (ii) is not usually used in ground-state calculations,
but employed in VASP in QP or any other correlated calculation.

IV. RESULTS
A. The example of ZnO, GaAs, and AlAs

As an illustrative example, we consider ZnO in the
zinc-blende structure. In this section, the k-point set is set
to 4 x 4 x 4 points to simplify the computationally rather
expensive convergence tests. Furthermore, the plane-wave
cutoff for the response function was set to a kinetic energy
of 1000 eV, corresponding to a basis set of about 1750
plane waves for the response function. We now focus on
the convergence of the results with respect to the number of
orbitals included in the calculation of the Green’s function
G and the response function yo. Figure 1 shows the QP
corrections of the Kohn-Sham eigenvalues versus the inverse
of the total number of bands.

We first concentrate on the results for the norm-conserving
(NC) and ultrasoft (US) PAW potentials with a core radius of
1.7 a.u. It is clear that the results are indistinguishable for up
to 150-200 bands, but beyond that the QP correction of the
3d orbitals deviates significantly for both calculations, with
a sharp drop being visible for the NC PAW potential around
200 orbitals. The final converged d-band correction differs by
almost 1 eV between the potentials, although both potentials
are practically indistinguishable for ground-state calculations
and GW calculations with few hundreds of orbitals. The error
isrelated to the lack of projectors at high energies, as confirmed
by inspection of (p,|a) for high-energy states a [compare

CBM

»+ NCPAW T =1.7 a.u.
——- USPAW T =1.7 a.u.
-—- US PAW rd:1.4 a.u.
--. US PAW rd:1.0 a.u.

+ NC PAW rd:1.2 a.u.

QP correction (eV)

L | L | | L
0 0.005 0.01 0.015 0.02
1/ number of bands

FIG. 1. (Color online) QP corrections to Kohn-Sham eigenvalues
for ZnO Gy W, calculations. The number of bands varies between
50 (right most point) and 2400 (left most point). To improve the
presentation, an upward shift of 1 eV was added to the VB and 3d QP
corrections (i.e., the true corrections can be obtained by subtracting
1 eV, moving the lines down by 1 eV).
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Eq. (14)]. A standard way to reduce the error of US PAWs
is to decrease the core radius used upon creation of the PAW
potential. Reducing the core radius for the d electrons r,; to
1.4 a.u. improves the results, but only slightly, and reasonable
agreement with the NC PAW results is only obtained at a
much smaller core radius of r; = 1.0 a.u., where the violation
of the norm is only about 20%. At this point, the ground-
state calculations with the US PAW r; = 1.0 a.u. potential,
however, require already a larger basis set than the calculations
with the NC PAW r; = 1.7 a.u. potential. Specifically, the
required plane-wave energy cutoffs for accurate ground-state
calculations are 1150 eV for the NC PAW r; = 1.7 a.u., and
500, 700, and 1400 eV for the US PAW potentials with core
radii of ry = 1.7, 1.4, and 1.0 a.u., respectively. Furthermore,
within the line thickness, the results for NC PAW potentials are
independent of the core radius for radii between 1.9 and 1.2 a.u.
(see crosses in Fig. 1). Hence, the remaining Zn calculations
were performed for a softer NC potential with the core radius
increased to 1.9 a.u. (compare Table I).

The errors in the QP corrections are most pronounced for
the 3d states. However, the valence band maximum (VBM),
which is dominated by oxygen 2p states, follows the 3d
states partially. This is of course related to the strong covalent
Zn-3d O-2p interaction: at the I' point the Zn-3d states
hybridize with the O-2p states forming Zn-3d O-2p bonding
and antibonding linear combinations. Since the antibonding
linear combination, which forms the threefold-degenerated
valence band maximum at I', has a strong Zn-3d character,
the states partly follow the behavior of the 3d states. As a
consequence, when the number of orbitals increases, the band
gap opens.

This is, however, not always the case, as exemplified for
GaAs and AlAs (Figs. 2 and 3). For these materials, there is
no (AlAs) or little hybridization between the 3d states and the
valence and conduction band states. Nevertheless, the 3d states
still influence the valence band and conduction band states, as
can be understood from Eq. (26). The d electrons will result
in a spherically symmetric density at the As and Ga atoms,

Ga 3d

———————

QP correction (eV)
o
I

-+ US PAW -
— NC PAW

| | |
0 0.005 0.01 0.015 0.02
1/ number of bands

FIG. 2. (Color online) QP corrections to Kohn-Sham eigenvalues
for GaAs Gy W, calculations. The number of bands varies between
50 (right most point) and 1600 (left most point). To the 3d QP
corrections, 1.5 eV has been added.
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--~ US PAW
~— NC PAW

CBM (X)

o
wn

o

QP correction (eV)

S
o

0 0.005 0.01 0.015 0.02
1/ number of bands

FIG. 3. (Color online) QP corrections to Kohn-Sham eigenvalues
for AlAs Gy W, calculations. The number of bands varies between 50
(right most point) and 1600 (left most point). To the VB and 3d QP
corrections, 0.5 and 3 eV have been added, respectively.

and this causes an attractive Coulomb hole at the atomic sites.
The localized d states themselves and the s-like conduction
band states are most strongly affected by this local potential
and pulled down to lower energies.

For GaAs, the first thing to note is that the Ga 3d states
first shift slightly upwards in energy and then suddenly drop
in energy. This is a result of the strong spatial localization of
the 3d electrons in Ga. The effect is even more pronounced
for the As 3d states as shown in Fig. 3. The more important
observation, however, is that the valence band states at the
I" point and the s-like conduction band minimum CBM(T")
follow this drop. The CBM at the X point exhibits a much
smaller slope than the valence band maximum VBM(T"). This
behavior reduces the I'-I" transition, but increases the I'-X
transition. Obviously, increasing the basis set can have quite
a substantial impact on the relative position of the conduction
band states and thus the direct and indirect gaps.

Remarkably, similar effects are observed even for AlAs
as shown in Fig. 3. The changes of the QP corrections are
about a factor of 2 smaller since the coupling to the strongly
localized As 3d states is now rather small (note the different y
scale in Fig. 3). Again, the QP correction of the CBM(I") state
exhibits the largest slope, the CBM(X) the smallest one, and
the VBM(I") is in-between. Consequently, the indirect gap of
AlAs increases, when the basis-set size is increased. Clearly,
whenever accurate direct and indirect gaps are needed, the
d electrons must be taken into account, and this applies to
both the anion as well as the cation (As, Se, Te). Furthermore,
PAW potentials without norm-conserving partial waves yield
too small QP corrections at I", in particular, for the CBM(I")
state, as indicated by the thin dashed lines in Figs. 2 and 3, and
consequently too large direct gaps and too small indirect gaps.

We performed extensive tests for ZnO, AlAs, CdS, GaN,
and InP, all confirming these observations. Although up to
about 100-200 orbitals per atom, the results are independent
of the choice of the potential, once the number of orbitals is
increased to several 1000, significant deviations between the
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QP corrections become discernible. US PAW potentials always
yield too small QP corrections for the d states and the results
converge only slowly with decreasing core radii to a limiting
value. In contrast, the results are almost independent of the
specific choice of the core radius for NC PAW potentials.

A final word of caution is in place here. In the present
implementation, the code restores an approximation of the
exact all-electron density on the plane-wave grid. As briefly
hinted at after Eq. (32), this is achieved by performing
a Fourier transformation of the exact augmentation charge
density Qup(r) = ¢ (r)pp(r) — (ﬁj(r)qgﬂ(r) to reciprocal space
0.p(G) and then expanding the augmentation density in a
set of orthogonal functions localized at each atomic site. In
the present calculations, three functions for each quantum
number [/ are used to expand the density difference between
the all-electron and pseudopartial waves (NMAXFOCKAE = 2
in VASP). They are used to restore the proper norm (I = 0),
dipoles (I = 1), and quadrupoles (! = 2) and higher multipoles
(I > 2). The first function serves to restore the exact Qus(G)
around G = 0 and is not required if the potentials are norm
conserving. The other two functions are chosen to restore
the density at larger plane-wave vectors G. Since the method
guarantees that the density on the plane-wave grid is almost
exactly equivalent to the exact all-electron density up to plane
waves corresponding to a kinetic energy of 400 eV, the fairly
complicated one-center terms in the screening matrix y, and
W do not need to be implemented. We believe that the present
procedure and implementation is very accurate since it yields
identical QP corrections for all potentials if the number of
unoccupied orbitals is not too large (right-hand side in Figs. 1,
2, and 3). With norm-conserving partial waves, the results
become even robust and stable for very large basis sets.
Restoring just the norm of Q,4(r) was found to be insufficient
for GW calculations: if only the norm is restored, differences
between different potentials can be around 1 eV for the QP
energies of localized d states, even when only a small number
of unoccupied orbitals is included in the GW calculations.

Finally, the interaction between the core and valence
electrons is always evaluated exactly at the level of HF
without any shape approximation, which is not always the case
for codes using standard norm-conserving potentials. Based
on our experience, we would not expect that such standard
potentials without the PAW information (all-electron orbitals)
can yield similar accuracy.

Technically, we believe that the procedures adopted here
allow us to get accurate and converged results for virtually any
material, although the construction of PAW potentials can be
tedious at times. For instance, ghost states at energies below
bound states or in the conduction band need to be avoided and
a sufficient number of projectors at high energies need to be
included.

B. Basis-set incompleteness correction

Converging GW results with respect to the basis-set size
requires tedious extrapolation procedures, as performed here
or in other work [28,39]. An alternative to the extrapolation is
to use the simple correction for the QP energies [Eq. (27)],
correcting the incompleteness of the auxiliary basis set.
Here, we test how accurate this procedure is. To avoid any
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FIG. 4. (Color online) Dependence of (a) the unscaled QP cor-
rection (without Z) and (b) of the quasiparticle band gap of wurzite
ZnO on the basis set used for the response function. Bare data (4
sign) and data corrected for the leading error according to Eq. (27),
marked with x sign, are shown. Horizontal lines are extrapolated
values. In (a) the data for the 3d and VBM states were shifted to a
higher energy by 1.5 eV.

contamination of the results, convergence with respect to all
other parameters, for instance, the number of bands and the
plane-wave cutoff for the orbitals E{, was achieved.

To test the correction, we again consider the well-
investigated ZnO here in the wurzite structure (see, e.g.,
Refs. [14,28]). Figure 4(a) shows the dependence of the QP
corrections on the inverse of the number of auxiliary basis
functions in the response function both without and with
the correction according to Eq. (27). The thin dashed lines
show values extrapolated from the last three (noncorrected)
data points assuming a linear convergence with the inverse
of the basis-set size, i.e., S(NJW) = g(00) + A/Ngw. The
renormalization factor Z changes slightly when the cutoff is
increased and we did not apply it here to remove this effect. The
plane-wave cutoff for orbitals was taken to be three times the
cutoff for the response properties, which was between 250 and
750 eV. Clearly, the QP corrections of the VB maximum and
the CB minimum converge much faster when the correction is
applied. The correction is larger for the VB maximum, which
contains a contribution of the 3d states of Zn. The correction
formula is less accurate for the 3d states: the corrected shift
of the 3d states deviates initially more from the extrapolated
value, and the difference is still pronounced for the largest
basis set used. However, the extrapolated value for the 3d
states might still possess some error because of the very slow
convergence with Njy. Importantly, the coefficient for the
correction calculated using Eq. (27) can be directly compared
to the value of the coefficient A obtained from the fit. For the
VB maximum and CB minimum, the agreement is excellent,
the fit yields A = 317 and 89 eV for the VB maximum and
CB minimum, respectively, while Eq. (27) gives A = 315 and
93 eV. For the 3d state, we obtain 502 eV from the fit and
842 eV from Eq. (27). Clearly, even larger cutoffs would have
to be used to observe the 1/ Ngw behavior. However, this is
hardly possible, not least because the largest calculation used
already over 12 000 unoccupied bands.
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The faster convergence of the QP corrections leads to a
much faster convergence of the band gap, shown in Fig. 4(b).
When the correction is used, a rather small cutoff of EJ, =
300 eV is sufficient to obtain a band gap converged to within
50 meV, whereas the error in the uncorrected band gap is
still more than 200 meV. For similar errors, the corrected
calculations are about 30 times cheaper, indicating that the
correction is a promising tool to improve the convergence
of QP energies in GW calculations. We also note that this
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TABLE III. GyW,@LDA results for absolute shift of the valence
band (VB) at I' compared to LDA calculations (A IP), position of
the VB minimum (I'ypy,), position of VB maximum at X, L (with
respect to I'), and conduction band (CB) minimum at I', X, and L.
For Ga, In, Zn, and Cd, the position of the d band (average at the
I point) is also indicated. Calculations are for 6 x 6 x 6 k points.
Results for materials that are metallic within LDA and where this

k-point set might thus be insufficient for convergence are in italics.

S ) X AIP Tyvgwn TI. L, L. X, X, d
correction is complementary to convergence accelerations with
respect to the number of included orbitals [40,41]. Here, we C —1.07 =22.06 7.43 —-292 1037 —6.55 6.21
correct for the error caused by the finite basis set used for the SiC —092 —15.61 730 —1.09 6.58 —3.27 243
response function, whereas those address errors incurred by Si —-0.60 —11.82 321 —1.21 2.06 —2.86 1.22
truncating the virtual orbital set. Ge —0.54 —12.69 043 —1.42 0.56 —3.09 1.10
BN —-1.35 —-21.09 11.29 —2.08 12.25 —-5.19 6.37
C. GyW, band gaps for semiconductors and insulators i}is :82; :Hg? ;éé :8;2 ;;2 :;3 ;;g
Tables II, III, and V collect the band gaps for the AlSb —0.65 —10.65 227 —091 1.99 —220 1.82
materials considered in this work for LDA, GoWy@LDA, GaN —1.04 —1586 2.88 —0.97 5.95 —2.68 4.59 —15.87
and G Wy @LDA calculations starting from LDA orbitals. The wz  —1.08 3.23 —15.66
results for GoW, starting from PBE orbitals are shown in GaP -0.70 —12.34 250 —1.14 236 —2.71 225 —16.86
Table IV. The lattice parameters of the materials are the same = GaAs —0.63 —12.59 1.08 —1.15 1.57 -2.68 1.96 —17.10
as in our previous work and are listed therein [35]. GaSb —0.54 —11.45 054 —1.17 084 —2.61 129 —17.32
InP -0.61 —11.32 1.13 —-0.99 2.00 —2.35 2.21 —15.73
InAs —0.60 —11.69 0.13 —1.00 143 —2.33 2.02 —15.84
TABLEII. Position of valence band (VB) maximum at X, L (with InSb —0.54 —10.61 0.13 —1.03 0.93 —228 1.72 —16.06
respect to I'), and conduction band (CB) minimum at I", X, and L with MgO —2.01 —17.47 7.55 —0.71 10.86 —1.44 1191
respect to VB maximum at I" for the local density approximation. For 7Zn0 —153 —17.75 2.46 —079 743 —2.15 7.00 —622
materials with an inverted gap, the VB maximum is set to the triple wz —1.78 2.83 —6.09
degenerated state that normally corresponds to the VB maximum. All 7ZnS —1.15 —12.62 336 —0.86 470 —2.18 4.62 —7.55
materials were considered in the diamond or zinc-blende structure, 7ZnSe —1.09 —12.97 238 —0.85 3.75 —2.12 4.06 —7.82
except for GaN and ZnO where the lines “wz” report the results for 7ZnTe —0.84 —11.59 2.17 —088 271 —2.13 3.15 -83l1
the wurtzite structures. CdO —0.81 —16.16 157 1.14 6.83 —0.98 646 —6.78
CdS —-096 —11.98 205 —0.77 4.09 —1.91 448 -8.67
Pvemin T L, L. X, X d CdSe —0.90 —12.37 133 —0.75 327 —1.83 393 -8.84
C _21.32 554 _—279 838 —629 470 CdTe —0.75 —10.99 146 —0.78 2.58 —1.85 328 —-9.34
SiC —15.33 628 —1.06 538 —-320 1.30
Si —11.96 252 —120 142 -2.85 0.60
Ge —12.81 —-0.15 —141 006 —3.08 0.66 The first important issue to note is that some of the
BN —20.07 868 —194 10.19 —491 434 materials show band inversion in LDA and PBE, namely,
AIP —11.50 310 —0.77 266 =212 144 Ge, GaSb, InAs, and InSb: for these materials, the threefold-
AlAs —11.90 1.86 —-0.82 2.02 -2.17 135 degenerated (cation) p orbitals are incorrectly above the anion
AlSb  —10.77 146 -091 126 -2.19 1.15 s orbital at the I point. In Table II, the gap is then given
GaN —15.64 1.63 —0.95 442 —-266 324 —13.50 as a negative value. From Table III, we see that the band
wz 1.94 —13.30 inversion is already abolished in the first GoWj iteration.
GaP  —1251 1.63 —1.13 151 =271 149 -14.68 Note, however, that the orbitals are kept fixed at the LDA
GaAs —1276 032 —-1.15 086 —2.69 134 —1491  Jevel and that any incorrect hybridization can not be corrected
GaSb  —11.59 —0.06 —1.17 032 -2.61 083 —1514  for by updating the eigenvalues only [42,43]. Furthermore,
InP —11.52 048 -098 131 -235 160 —I4.13 the band inversion causes sometimes convergence problems in
InAs  —11.88 —043 -099 079 -233 143 -14.30 the G W), iteration. Specifically, this happened for CdO, where
InSb -10.77 -038 —-1.01 042 -227 125 -1451 subsequent iterations did not converge.
MgO  —17.00 468 -0.67 775 —1.37 8389 A further technical problem is that both in the GW,, as
ZnO0 —17.68 0.62 —-0.80 532 -221 513 =530 . . .
wz 075 504 well as GoWy cglculatlons, the screening of the system is
7nS  —13.08 187 —087 310 —293 319 —643l Practlcally metallic for systems with improper band ordepng
7nSe  —1328 105 —087 236 -220 281  —655 in the DFT. Hence, we expect that these result.s are possibly
ZoTe —1182 106 —090 165 —218 217 —694  hot well converged with respect to the k.—pomt m'esh, and
CdO  —1573  0.92 142 568 —098 510 —5.14 the flnal reported numbers sho.ul(} er cqn51dered with some
cdS  —12.40 090 —078 279 —195 330 —7.60 caution. We report those values 1n.1tahcs in the tables. Another
CdSe —12.65 036 —0.77 219 —1.89 294 _7.80  reason forerrors is the frequency integration. We represent the
CdTe —1123 055 —-079 166 —1.89 245 —8.18 polarizability on a discretized frequency grid [36] with 200

frequency points, and double checked whether a reduction
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TABLE IV. Same as Table III but for GoW,@PBE. The IPs are
generally 0.15 eV more negative than for Go Wy @LDA.

AIP 1_‘VBmin Fr Lv Lc Xv Xc d

C —1.22 —-22.12 743 -2.93 1038 —6.58 6.23
SiC  —1.05 —-15.69 735 —1.10 6.62 —3.30 242
Si —-0.72 —11.83 325 —1.21 214 —-2.86 1.28

Ge 082 —12.70 063 —1.43 067 =3.08 1.16
BN —1.53 —-21.05 11.33 —2.06 12.29 —5.18 6.40
AP —096 —11.37 4.23 —-0.77 3.79 —2.13 248
AlAs —1.01 —11.82 299 —-0.82 3.08 —2.17 231
AlSb —0.84 —10.67 240 —-091 2.07 —2.20 1.87
GaN —-120 —1593 285 —0.98 593 —-2.70 4.50 —15.82
wz —123 3.20 —15.61
GaP —-0.86 —12.34 262 —1.14 245 =271 230 —16.77
GaAs —091 —12.56 123 —1.14 1.68 —2.66 2.04 —16.97
GaSb —0.77 —11.41 068 —1.17 092 —=2.60 134 —17.22
InP  -0.78 —11.29 123 —-0.99 2.10 —2.35 228 —15.66
InAs —0.83 —11.65 023 —1.00 148 —2.32 2.04 —1573
InSb —0.75 —10.57 025 —1.03 0.99 =228 176 —1594
MgO -2.16 —17.61 7.55 —0.73 10.80 —1.45 11.82

ZnO0 —-1.73 —17.84 242 —-0.79 741 -2.17 693 —6.16
wz  —1.87 2.76 —5.98
ZnS —133 —12.64 346 —087 479 =219 4.68 —-7.45
ZnSe —1.34 —1295 2.55 —0.85 3.88 —2.13 4.15 -7.64
ZnTe —1.07 —11.56 2.27 —-0.89 2.78 —2.14 321 -8.10
CdO —-0.95 —16.29 150 129 6.74 —0.99 6.45 —6.20
CdS —1.11 —11.97 2.15 —0.78 4.19 —1.93 455 -8.62
CdSe —1.15 —1234 152 —0.75 344 —1.84 4.06 -8.71
CdTe —0.99 —-1096 1.57 -0.79 2.67 —1.86 3.35 —9.19

of the frequency points from 200 to 100 points changes the
results. For all systems, except ZnO, the changes in the QP
energies and gap are well below 50 meV, with most changes
being only 10-20 meV. For ZnO, the gap increases by 100 meV,
when the number of frequency points is reduced to 100. The
origin for this change is the one single sharp p-s transition
occurring at the I point, which is not accurately represented
with the coarser frequency grid. Although increasing the
frequency grid to 400 points changed the gap by less than
50 meV for ZnO, error bars for ZnO are possibly somewhat
larger than for other systems. All in all, we expect the final
errors to be around 50 meV for s and p dominated states and
100 meV for d states.

The effect of the starting functional (LDA versus PBE,
Table III versus Table IV) is small for all materials without
d electrons (see, for example Si). However, if d electrons
are present, the d electrons shift slightly towards the Fermi
level by 0.1 eV in the GoWy, as well as in the preceding
PBE calculations. More notable is the increase of the band
gap by about 0.2 eV, in particular, for the I'-I" transition
for both PBE (not shown) and GoW,@PBE. This implies
that GoWy@LDA calculations can not be straightforwardly
compared to GoWy@PBE calculations for systems with d
electrons. Although the PBE starting point seems better
suited since the final gaps are larger and always in better
agreement with experiment, we will mainly concentrate on the
GoWy@LDA calculations in the following discussion since it
is common practice to start from LDA orbitals.

PHYSICAL REVIEW B 90, 075125 (2014)

Let us start with a discussion of those materials that have
been most widely discussed in literature, Si and ZnO. For Si,
Friedrich et al. [44] reported valence band and conduction
band positions of 3.2 eV (I'-I"), —1.22, 2.12 (I"-L), —2.92,
1.19 (I"'-X) compared to our values of 3.22 (I"-I"), —1.21, 2.06
(I'-L) —2.87, 1.23 (I'-X). However, Friedrich’s calculations
were performed using only 250 bands and 4 x 4 x 4 k points,
and they note that “the results are lowered by 0.02 eV if the
k-point mesh is fully converged, and by another 0.02 eV if
screening due to the 2 p electrons is included in the correlation
self-energy.” These effects might further improve agreement
with our results.

ZnO is certainly the most controversial material, with
reported band gaps varying between 2.1 and 3.4 eV for GoWj
calculations [14,37,41]. The larger value of 3.4 has been shown
to be related to the plasmon pole model [15], whereas the
smaller value of 2.1 eV has been reported for VASP, albeit for
zinc-blende and PBE orbitals [37]. This decreases the gap by
0.2 and 0.1 eV, respectively; the GoWy@LDA band gap for
wurtzite ZnO is 2.4 eV with a similar setup and potential
as in Ref. [37]. In the present calculations, we predict a
basis-set converged band gap of 2.83 eV using 6 X 6 X 6 k
points. Increasing the grid to 8 x 8 x 8 k points, the value
increases to 2.87 eV. These values are only slightly larger
then the value of 2.83 eV reported by Friedrich et al. [28] for
8 x 8 x 8 k points. Due to the very slow convergence with the
number of orbitals and slow k-point convergence, we, however,
emphasize that our ZnO values are possibly less accurate than
for other materials: errors around 50 meV are technically very
difficult to achieve for this material.

Concerning the d levels and the other materials considered
in this work, we start with a comparison with the most
recent WIEN2K full potential linearized augmented-plane-wave
(FLAPW) values by Li er al. [45]. For the d states, they
report values of —6.84, —7.12, —7.55 eV (ZnS, ZnSe, ZnTe)
and —8.16, —8.45, —8.74 eV (CdS, CdSe, CdTe), typically
0.5-0.7 eV higher than our present values. This is likely to be
a result of insufficient band and basis-set convergence in the
FLAPW calculations. For instance, in the FLAPW calculations
the number of bands was nowhere close to the values required
to see the drop in the d-level energies (compare Fig. 1). The
reported apparent convergence might be an indication that
the one-center basis sets, which play a similar role as the
projectors in the PAW method, were not sufficiently large.
Compared to our own previous values reported in Ref. [37],
we note that these early calculations were neither basis-set
converged, nor did we very accurately restore the all-electron
density distribution on the plane-wave grid. Both errors might
or might not accidentally cancel; certainly the present values
are more accurate and supersede the previous values.

For the band gaps, the WIEN2K FLAPW calculations
reported in Ref. [46] are, except for GaAs (see below),
generally smaller than our GoW, band gaps: 1.00 (Si), 5.42
(C), BN (6.03), AIP (2.18), GaAs (1.29), compared to the
present values of 1.10 (Si), 5.61 (C), BN (6.37), AIP (2.43),
GaAs(1.08). We suspect that this is again a result of insufficient
convergence with respect to the plane-wave or one-center
FLAPW basis sets. More accurate values have been published
by Friedrich et al. using the FLAPW method [47]. In this case,
the one-center basis sets were improved using local orbitals.
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FIG. 5. (Color online) Band gaps predicted using GW,@LDA
compared to experimental values. The theoretical band gaps have
been corrected for spin-orbit coupling given in the Supplemental
Material of Ref. [35]. Experimental data are also collected in
Ref. [35].

They find band gaps of 1.11 (Si), GaAs (1.31), CdS (2.18),
GaN (2.83), 5.62 (C), BN (6.20), MgO (7.17), most in good
agreement with our values 1.10 (Si), GaAs (1.08), CdS (2.10),
GaN (2.90), 5.61 (C), BN (6.37), MgO (7.54). As to why our
band gaps are generally larger for oxides and nitrides compared
to the FLAPW calculations and our previous calculations in
Ref. [37], we note that the 2p levels need to be treated with
similar care as the d states, and we suspect that the one-center
basis sets for those materials were still not fully converged in
the FLAPW calculations.

For GaAs, our present band gap is smaller than the
two FLAPW values (both around 1.30) and our previous
calculations. As already discussed above and shown in Fig. 2,
as opposed to other materials, in GaAs the band gap decreases
when the basis-set size is increased. After communicating our
values, Friedrich carefully recalculated the FLAPW gaps with
improved settings. For similar setups and PBE starting orbitals,
his new calculations yielded only a 50 meV larger band gap
than our calculations, which is within our estimated error bars
[48]. This confirms our suspicion that most of the previously
reported values (including our own publications) were not fully
basis-set converged. In this work, we have done everything to
converge the results carefully, for instance, by checking every
single PAW potential painstakingly, and comparing them with
even smaller core PAW potentials.

Figure 5 compares the calculated GWy@LDA band gaps
tabulated in Table V with experimental values collected in
Ref. [35]. We observe that the band gaps for the “metallic”
LDA systems (InSb, InAs, GaSb, and Ge) are noticeably
too small. For sp bonded systems, the agreement is oth-
erwise seemingly rather good, although it should be noted
that electron-phonon coupling can significantly reduce the
experimentally measured gap with the effect being about
0.4 eV for C and 0.1 eV for Si [49-51]. We expect similar
contributions of the order of 0.4 €V for other oxides, nitrides,
and carbides, and of the order of 0.1-0.2 eV for sulfides
and materials containing aluminium. If these corrections are
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TABLE V. Same as Table III for GWy,@LDA. GW,@LDA
calculations did not converge for CdO because of the incorrect band
order for the LDA starting orbitals. The G W, @PBE are reported in
the Supplemental Material of Ref. [35].

AIP Tygmn I. L, L. X, X. d

C —1.21 —22.38 7.57 —3.02 10.60 —6.71 6.36
SiC  —-1.10 —15.80 7.50 —1.10 6.79 —3.32 2.61
Si —-0.72 —11.93 332 —1.22 215 =290 131

Ge —056 —12.78 053 —1.44 062 —-3.12 115
BN —1.56 —-21.30 11.66 —2.10 12.58 —5.25 6.65
AP —099 —11.50 427 -0.79 3.86 —2.17 2.58
AlAs —1.00 —11.96 296 —-0.83 3.12 —-2.20 2.39
AlSb —0.78 —10.79 238 —093 2.10 —2.23 1.93
GaN —-1.30 —16.41 3.11 098 6.25 —2.71 4.88 —16.82
wz  —1.33 3.48 —16.57
GaP —-0.85 —1251 2.63 —1.15 2.50 —2.74 239 —17.98
GaAs —0.78 —12.75 1.19 —1.16 1.68 —2.71 2.07 —18.30
GaSb —0.66 —11.57 0.62 —1.18 092 —2.63 137 —18.66
InP  —-076 —11.47 123 —1.01 2.12 -238 2.34 —1648
InAs —0.86 —11.72 032 —091 165 —2.24 224 —1647
InSb —-0.68 —10.71 026 —1.02 1.03 —-2.29 182 —16.87
MgO —242 —1821 8.04 —0.73 11.42 —1.49 12.48

ZnO0 -2.17 —-18.11 3.10 —-0.81 8.20 —2.21 7.71 —6.68
wz —2.30 3.41 —6.47
ZnS —143 —12.82 3.66 —0.86 5.01 —2.21 492 —-827
ZnSe —1.37 —13.13 2.64 —0.85 4.03 —2.14 434 —8.62
ZnTe —1.03 —11.75 2.35 —-0.89 2.89 —2.16 3.32 -9.14
CdS —-122 —12.16 230 —0.79 437 —1.94 477 -9.18
CdSe —1.16 —12.53 1.55 -0.76 3.52 —1.85 4.19 —-9.39
CdTe —095 —-11.17 1.62 -0.79 2.76 —1.88 3.46 —-9.87

considered, the comparison with experiment would be less
favorable. However, to address this issue properly requires
one to perform the actual calculations with the phononic
contributions accounted for.

V. DISCUSSION AND CONCLUSION

One central result of this work is a simple asymptotic esti-
mate of the self-energy contribution from high-energy plane-
wave-like states [see Eq. (26)]. Remarkably, this estimate
allows us to determine the error in QP corrections using only
the total charge density and the charge density of the QP state in
question. The estimate is exceedingly easy to calculate and can
be readily implemented in any plane-wave or all-electron code.
A similar error estimate is obtained for the correlation energies,
given by Eq. (9). That both errors are related is fairly obvious
since QP removal and addition energies can be regarded as
the energy differences between systems with N and N — 1
and N + 1 electrons, respectively. The important observation
is that in both cases, plane-wave-like states G and G/, that
are not relevant for ground-state calculations, contribute to the
correlation energy since the density at a wave vector G — G’
is involved. Due to this folding, even plane waves with very
large momentum contribute to the correlation energy. We have
discussed briefly that the origin of this problem is related
to the so-called cusp condition. The addition of an electron
at position r induces a charge depletion around r, which
is described by the exchange-correlation hole 4*¢(r,r’). The
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correlation contribution to the hole is related to the screening
charge density, and these quantities have a cusp for ' — r,
which can be accounted for only when an infinitely large basis
set is used.

The present correction is complementary to resolution
of identity methods [40] or effective energy denominator
techniques [41]. These techniques allow one to obtain con-
verged results for a specific plane-wave basis set using only
a small number of orbitals. They, however, do not allow one
to determine the error incurred by disregarding plane-wave
components in the auxiliary basis set for the overlap charge
density resulting from two orbitals. Our present correction
does exactly this. Specifically, it allows us to estimate the
residual error resulting from the neglect of high momentum
plane-wave components in the density response function. As
observed before (and re-derived here), this error is proportional
to the inverse of the number of basis functions included in
the auxiliary basis set for the density or response function.
The correction has been tested for the case of ZnO and
seems to be quite promising, much reducing the computational
effort required to obtain an accurate value for the QP gap.
However, for localized states, such as the Zn-d states, the
approximations made in deriving the leading-order correction
become less accurate and terms beyond the leading order
should be included.

Alternatively, one can extrapolate to the infinite-basis set-
limit by performing a series of calculations with an increasing
basis set for the orbitals and the response function. According
to the derived asymptotic behavior, the error should fall off
like one over the number of basis functions. This procedure has
already been applied by Garcia and Marini in RPA calculations
[52]. To avoid any bias, this procedure was adopted in this work
to predict QP energies for 24 materials.

Unfortunately, the derivation of Eq. (26) indicates that stan-
dard PAW potentials with non-norm-conserving “ultrasoft”
partial waves will not describe QP levels accurately since
the norm is not correctly restored when the overlap density
between ground-state orbitals and high-energy plane-wave-
like orbitals is calculated. We observe that the resulting error
can be substantial. For instance, for ZnO using US PAW
potentials, the d levels are almost 1 eV too high in energy
compared to accurate reference calculations, and the band-gap
error is about 400 meV. Although ZnO is an extreme example,
since the d levels are rather shallow (7 eV below the Fermi
level) and the violation of the norm is particularly large for
3d elements, we found that similar errors are observed for
all materials containing elements with 3d, as well as 4d and
5d electrons. Even for AlAs and GaAs, the inclusion of the
As 3d levels changes the indirect gap by about 200 meV.
Equation (26) suggests two strategies to reduce the error: (i)
either more projectors at higher energies need to be included, or
alternatively (ii) the partial waves are made norm conserving.
Although we have not discussed option (i) in detail, we found
that it is, in practice, difficult to increase the number of
projectors beyond three for a given quantum number /. Solution
(ii), however, works reliably and yields PAW potentials that
are robust and accurate. Furthermore, the specific choice
for the core/pseudization radius influences the QP energies
only very little for NC PAW potentials, as demonstrated
for ZnO (and observed for all materials considered here).
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The disadvantage of NC PAW potentials is that they require
about 50% larger plane-wave cutoff energies than standard
ultrasoft PAW potentials. Although this makes the potentials
impractical for ground-state calculations, fairly large plane-
wave cutoffs are anyway required to obtain converged QP
energies, so that the increased cutoff has, in practice, little
consequences for GW calculations.

In this work, we have calculated Go W, and G W, band gaps
for prototypical semiconductors and insulators using the newly
constructed NC PAW potentials. Overall, we observe what has
now been known for quite some time. The QP gaps for medium
gap materials are very accurate using the G Wy approximation,
slightly outperformed by the G W, approximation. Errors are
even acceptable for ZnO, that has long been considered to
be problematic. For small gap systems, however, our results
are clearly unsatisfactory, and this concerns, in particular,
materials that show incorrect band order at the I" point in
the local density approximation: in Ge, GaSb, InAs, InSb, and
CdO, the anion p states are above the Fermi level, whereas the
cation s state is below the Fermi level for LDA. This results
in sizable errors in the standard perturbative GW approach.
Better starting points than DFT orbitals and DFT screening
are required in these cases. Presently, the most successful
approaches are the self-consistent procedures of Kotani and
Schilfgaarde [13,53] or somewhat cheaper hybrid functionals
[35,54,55] or self-consistent calculations based on optimized
effective potentials in the RPA [39].

We believe that our reported values are as accurate as we
can possibly make them within the limits of the GW @DFT
approximation, and we hope that they can serve as a benchmark
for other GW codes. It is in fact uttermost time for the
ab initio community to establish such benchmarks to make
GoWy a truly validated tool (as DFT already is). After all,
validation has made quantum chemistry approaches using
Gaussian-type orbitals and DFT so successful. Unfortunately,
GW results with that kind of reference quality are still rare.
Specifically, we are only aware of accurate calculations for Si
and ZnO, for which we have made a comparison and found
very good agreement [28,44]. In this context, we want to
emphasize that methods employing compact basis sets, such as
the linearized muffin tin orbital methods and even the standard
full-potential linearized plane-wave method, will experience
similar problems to the ones we experience with non-norm-
conserving PAW potentials: to obtain highly accurate QP
corrections and many-electron correlation energies, plane
waves and local basis functions that are irrelevant for density
functional ground-state calculations need to be included in
excited-state calculations. This fact has been known in the
quantum chemistry community for some time and certainly
imposes a computational challenge that needs to be overcome
when reference quality data are sought.
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APPENDIX A: COMPARISON OF RPA RESULTS WITH
AND WITHOUT NORM-CONSERVING PAW POTENTIALS

The incorrect asymptotic convergence affects also the
correlation energies obtained with the MP2 and RPA methods.
To assess the magnitude and significance of the errors, we have
recalculated the lattice constants of d metals using the NC PAW
potentials and compared them to previous results published in
Ref. [56]. We find that the absolute correlation energies indeed
increase in magnitude when NC PAWs are used, typically by
10% to 20%. The larger correlation energy leads in almost
all cases to a reduction of the equilibrium volume. The effect
depends on the magnitude of the norm violation in the original
US PAW potentials, which has been up to 90% for some 3d
metals. Concomitantly, for the 3d metals Sc, Ti, Co, and Ni,
the equilibrium volume is reduced by 2.5%-3%, significantly
improving agreement between the RPA and experiment. The
norm was better preserved for 4d and 5d metals and here the
changes of the equilibrium volumes are only around —0.5%.
Changes for s, p bonded materials were found to be negligible
since PAW potentials for those elements violate the norm very
little. A more detailed discussion will be published elsewhere.

APPENDIX B: ASYMPTOTIC CONVERGENCE
OF STATIC COHSEX

It is interesting to relate the second-order quasiparticle
correction [Eqgs. (22) and (24)] to the second order of the
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commonly employed static COHSEX. The static approxima-
tion is obtained by assuming w — ¢, = 0 (or¢,, — &, = 0),i.e.,
assuming that the largest contributions to the self-energy come
from states close in energy to the state m. For the second-order
COH contribution [Eq. (24)], this approximation yields the
following formula:

(| £ COH) [y 2 4r 4 &

= @a@ (m| — Gln)(n|G'|m)

« 3 (il = Gla){a|G'li)

& —&q

B
For large G and G’, a sizable contribution is only expected to
arise if the orbital a corresponds to a plane wave G, ~ —G and
G, ~ —G’. Neglecting the energy of the occupied state &;, one
obtains &; — &, ~ G?*/2. Comparing this to the approximation
for the energy denominator used in the full equation [Eq. (5)],
we see that the static COH leads to exactly twice the proper
value. Since the SEX part converges faster, the static COHSEX
overestimates the high G contributions by a factor 2, as has
been recently observed in actual calculations (without proof)
by Kang and Hybertsen [27]. We note that the factor % can
be also derived using the plasmon pole approximation as
shown by Deslippe et al. following a route similar to our
current derivation [57]. The present derivation, however, is
exact in second order and does not involve any specific model
(except the assumption that at high energy, plane waves do not
contribute to the expansion of the occupied orbitals).
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