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The paramagnetic spin-disorder resistivity (SDR) of transition-metal ferromagnets Fe, Co, Ni, ordered
transition metal alloys Ni3Mn and Fe3Si as well as Ni2MnX (X = In,Sn,Sb) Heusler alloys is determined from
first principles. SDR is evaluated similar to the residual resistivity by using the disordered local moment (DLM)
model combined with the Kubo-Greenwood linear response calculation. The electronic structure is determined
within the tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA) applied
to the DLM state. We also estimate the temperature dependence of the resistivity below the Curie temperature
using a simple model. The results agree well with the supercell Landauer-Büttiker calculations and, generally,
with experimental data. For the Ni2MnSb Heusler alloy it is necessary to include substitutional disorder of
B2-type to explain the experimental data.

DOI: 10.1103/PhysRevB.86.144423 PACS number(s): 75.50.Bb, 72.15.−v, 71.23.−k, 72.10.Di

I. INTRODUCTION

Temperature dependence of the resistivity is one of the
basic properties of a metal. In normal metals and alloys
without an external magnetic field, the dominant mechanisms
contributing to the resistivity are (i) the residual resistivity
due to the scattering of conduction electrons on impurities
and other structural defects ρimp, and (ii) phonon scattering
ρph. In ferromagnetic metals there is an additional scattering
mechanism due to (iii) magnetic fluctuations ρmag, which
usually reach their maximum close to the Curie temperature
(Tc).1–3 The latter, spin-disorder part of the resistivity is the
subject of this paper. The well-understood resistivity due to
phonon scattering4 depends linearly on temperature T above
the Debye temperature and usually even below it down to fairly
low temperatures. The resistivity due to the phonon mechanism
has been calculated from first principles for a number of metals,
and good agreement with experiment was obtained.5 On the
other hand, first-principles calculations of the spin-disorder
part of the resistivity have not been attempted until recently.
Theoretical treatment6–9 based on the s-d model Hamiltonian
predicts a quadratic temperature dependence of the resistivity
ρ for low temperatures, a constant, temperature-independent
ρ above Tc, and a ρ ∝ [1 − M2(T )/M2

0 ] behavior at interme-
diate temperatures [M(T ) and M0 denote the magnetization at
temperatures T and zero, respectively].

The above simple description of the temperature-dependent
resistivity is often used in the experiment. The resistivity can
be written more generally as

ρ(T ) = ρimp + ρee(T ) + ρph(T ) + ρmag(T ) + ρmix(T ), (1)

where ρimp, ρph, and ρmag were discussed above. The second
term, ρee, the contribution due to electron-electron correla-
tions, is neglected here as in most other first-principles studies.
In some cases, e.g., in rare-earth metals, the electron correla-
tions are relevant to the electronic structure and modifications
are needed. We refer the reader to our recent paper on the
subject.10 Electron correlations are also important in transport
studies for low-dimensional systems and at low temperatures
(weak localization and conductance fluctuations).11 The last
term, ρmix, contains deviations from the Matthiessen rule, i.e.,
from the simple sum of above described contributions. For
example, it can contain interference terms such as magnon-
phonon scattering. Also, the temperature dependence at
intermediate temperatures can be affected by deviations from
Matthiessen’s rule due to the presence of two spin channels
for conduction.12 The spin-disorder part of the resistivity
can also depend on magnetic short-range order, particularly
in the critical region around Tc.9 We mention that we have
also neglected the effect of temperature on the electronic
structure which, due to smearing out of the Fermi distribution,
may slightly reduce values of local moments and thus the
spin-disorder scattering strength. A good agreement between
the theory and experiment justifies, at least a posteriori, the
neglect of ρee and ρmix contributions for systems studied here.

The saturated magnetic resistivity above Tc corresponds to
the limit of vanishing spin-spin correlations, and it is usually
called the spin-disorder resistivity (SDR). It can often be
cleanly extracted from experimental measurements taken to
sufficiently high temperatures, where the temperature depen-
dence is linear and largely due to phonons. Extrapolation of the
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phonon contribution to T = 0 and subtraction of the residual
resistivity gives a reasonable estimate of the experimental
value of the SDR to which the theory can be compared.13

Quantitative description of the SDR using first-principles
calculations requires a consistent averaging procedure. One
option is to perform a direct averaging of the Landauer-
Büttiker (LB) conductance over spin configurations in super-
cells; this has been done for Fe and Ni14,15 and for heavy
rare-earth metals.10 Another option is to use the disordered
local moment (DLM) method,16 which approximates the
paramagnetic state as an uncorrelated ensemble of randomly
oriented spins and solves the electronic structure problem
in the coherent potential approximation (CPA). The Kubo-
Greenwood linear response calculation, with proper inclusion
of vertex corrections, can then be performed.17,18 A semi-
empirical approach19 to calculate the SDR was implemented
by assuming a quadratic temperature dependence and calcu-
lating the parameters from first principles.

In Ref. 20 the SDR was calculated using a hybrid method,
in which the electronic structure is described by DLM, and the
SDR is calculated in a multilayer geometry as an extrapolation
from large values of the imaginary part of energy (1 and 2 mRy)
without including vertex corrections. The resulting SDR of Fe
and Co was strongly overestimated.

In this paper the SDR is calculated using the DLM method
and the standard linear response technique applied in the bulk
unit cell with the inclusion of vertex corrections. We consider
the transition metals bcc-Fe, fcc-Ni, and fcc-Co, the ordered
Ni3Mn (Cu3Au structure) and Fe3Si (D03 structure) as well as
the Heusler alloys Ni2MnX, where X = In, Sn, and Sb. The re-
sults are compared with experiment and, when available, with
first-principles calculations using direct averaging over spin-
disordered supercells. Excellent agreement is found between
the DLM and supercell methods, as well as with experimental
SDR values. The coefficient of the empirical T 2 term for the
total resistivity is also calculated for Fe and Ni2MnSn and is
found to agree well with fits to experimental measurements.

II. FORMALISM AND COMPUTATIONAL DETAILS

The electronic structure calculations were performed using
the scalar-relativistic tight-binding linear muffin-tin orbital
(TB-LMTO) scheme21 and the local density approximation
(LDA). For the parametrization of the local density functional
the Vosko-Wilk-Nusair exchange-correlation potential22 was
used. The effect of disorder (the DLM model) is described
by the CPA formulated in the framework of the TB-LMTO
Green’s function method.23 The same atomic sphere radius
was used for all the constituent atoms in the case of ordered
and Heusler alloys, and lattice constants were taken from
experiment.

In fcc Ni, the DLM moment collapses to zero while
the moment in a real material is expected to persist due
to longitudinal spin fluctuations.24–27 In this case we use
the fixed-spin moment (FSM) approach28 and treat the local
magnetic moment as an adjustable parameter to recover the
experimental value of the SDR, as was done in Ref. 15.
Note that this moment is observable and can be measured
experimentally using neutron scattering. This approach is also
used for Co.

The residual resistivity is determined by the linear-response
theory as formulated in the framework of the TB-LMTO-
CPA method using the Kubo-Greenwood (KG) formula17

applied to the DLM state, including vertex corrections.18 (See
Appendix A for the justification of the binary alloy analogy
for the KG formula.) This approach allows us to include both
the substitutional and magnetic disorder on an equal footing,
which is necessary for Heusler alloys.

For Fe we also evaluate the SDR using the fully-relativistic
(Dirac) version of the KG formula (DKG-DLM) which was
implemented recently.29 Some comments are needed, however,
concerning the DLM method in the relativistic theory. In the
scalar-relativistic case, the spins are decoupled from the lattice,
and angular integration for the paramagnetic state can be
performed analytically (see Appendix A). In the relativistic
case this is no longer true, and the averaging has to be
done numerically. In the present case of cubic lattices (bcc,
fcc), we have replaced the isotropic spin distribution by
a discrete set of 26 directions: six [100] directions along
cube edges, twelve [110] directions along face diagonals,
and eight [111] directions along body diagonals. The weights
of these directions were chosen as c[100] = 1/21 ≈ 0.0476,
c[110] = 4/105 ≈ 0.0381, and c[111] = 9/280 ≈ 0.0321. With
this choice, the averages of the spherical harmonics Y�m(n)
over the isotropic distribution of unit vectors n, 〈Y�m(n)〉 =
δ�,0/

√
4π , are exactly reproduced for all |m| � � � 7. This

approach represents an alternative to the numerical integration
over the angles.30 The present choice is restricted to high
symmetry directions of the lattice, which guarantees that the
local moments are strictly parallel to the local exchange fields,
so that no constraining magnetic fields have to be introduced.31

To summarize the present approach: The SDR is the
resistivity of the completely disordered spin state, which is
described by the CPA in the framework of the KG approach.
This is an approximation but is justified by a direct comparison
with the more general LB approach. Another problem is the
choice of potentials of the randomly disordered spin state used
in the KG calculations. The degree of localization and thus
the stability of the local magnetic moment increases in the
series Ni-Co-Fe-Mn. The conventional DLM potentials are
good for rigid moments, i.e., Fe and in particular Mn-based
Heusler alloys. If the DLM approach fails like in fcc-Ni, we
employ the FSM approach and/or construct the DLM state
from potentials of the ferromagnetic state as was suggested
and successfully used in Refs. 10, 14, and 15.

III. RESULTS AND DISCUSSION

In this section we present results for the SDR of transition-
metal ferromagnets and selected ordered and Heusler alloys.

A. Transition metal ferromagnets

1. bcc iron

For bcc Fe we performed KG-DLM calculations with both
spd and spdf basis sets, as well as a fully-relativistic DKG-
DLM calculation. The results are summarized in Table I. The
magnitude of the local moment in KG-DLM and DKG-DLM
is almost the same, and it agrees well with other theoretical
calculations and experimental measurements (also listed). The
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TABLE I. Calculated SDR (ρSDR) for bcc-Fe in the present
approach (KG-DLM) and in the supercell LB (sc-LB)14,15 are
compared with its experimental value (ρexp) (Ref. 13). The value of
the SDR from the Landauer-DLM approach (Ref. 20) is 180 μ� cm.
Present results obtained using the fully relativistic (Dirac) version of
the KG-DLM approach [DKG-DLM (Ref. 29)] are also shown. We
present the magnetic moments in the ferromagnetic phase (MFM

tot ) and
in the DLM phase (MDLM

tot ) when available. Results are shown for
the spd-basis while corresponding values for spdf -basis are given in
brackets. The experimental lattice constant of bcc-Fe was used.

Method

KG-DLM DKG-DLM sc-LB exper

MFM
tot (μB) 2.23 (2.18) 2.23 (2.19) 2.29 (2.22) 2.18

MDLM
tot (μB) 2.15 (2.06) 2.18 (2.08)

ρSDR (μ� cm) 84.7 (71.5) 89.6 (75.2) 102 (85) 80

local moment is slightly reduced if the spdf basis set is used,
as well as in the self-consistent DLM state, in agreement with
previous studies.16 The KG-DLM and DKG-DLM results for
SDR agree well with experiment. They also agree well with
the LB supercell method of Ref. 15; the small difference is
mainly due to the small difference in the local moments. In
contrast, SDR obtained in the hybrid approach of Ref. 20 for
the experimental lattice constant is about twice as large.

The effect of vertex corrections in bulk KG calculations
(KG-DLM or DKG-DLM) is only a few percent. The main
reason for this is the large exchange splitting in Fe. The SDR
in DKG-DLM is slightly larger compared to scalar-relativistic
KG. A somewhat analogous enhancement was found for some
ferromagnetic random alloys, such as Ni-Co or Ni-Fe, where
the residual resistivity is appreciably enhanced due to the spin-
orbit coupling. In those alloys the relatively large effect stems
from the weak disorder in the majority spin channel.32 In
paramagnetic Fe the effect of spin-orbit interaction is weak,
because the conduction channels are already strongly mixed
by spin disorder.

2. fcc nickel and cobalt

In fcc Ni the static local moment in the DLM state is
unstable, and the calculation of SDR can not proceed in
the usual way. However, electrons are still expected to be
scattered by fluctuating local moments.24–27,33 In Ref. 27
the local moment in fcc Ni near Tc was estimated to be
0.42 μB. In previous supercell LB calculations14 the local
moment was used as an adjustable parameter, and it was found
that agreement with experiment requires the local moment
of about 0.35 μB . Here we follow the same logic without
attempting to evaluate the effective local moment in the
paramagnetic state. The atomic potentials are prepared using
the FSM method by constraining the local moment to several
values: 0.6, 0.45, and 0.3 μB.34 (The self-consistent values
in the ferromagnetic state are 0.628 (0.604) μB for the spd

(spdf ) basis set.)
The results for fcc Ni are summarized in Table II, which

also includes the supercell LB results from Ref. 15 and the
experimental value. The KG-DLM calculations agree well
with the LB results for all chosen values of the local moment,

TABLE II. The calculated SDR (ρSDR) for ferromagnetic fcc-Ni
in the present KG-DLM approach are compared with the results of the
supercell LB (sc-LB) approach (Refs. 14 and 15). The experimental
value is 15 μ� cm (Refs. 13 and 35). Calculated resistivities are
presented as a function of the effective Ni-local moment Meff . Results
are shown for the spd-basis while corresponding values for spdf -
basis are given in brackets. In the case of the sc-LB approach we
also show theoretical error bars (see text for details) (Ref. 15). The
experimental lattice constant of fcc-Ni was used.

Method Meff (μB) ρSDR (μ� cm)

KG-DLM 0.3 12.4 (10.2)
0.45 26.7 (19.7)
0.6 34.1 (29.7)

sc-LB 0.3 12 ± 0.3
0.4 21 ± 0.4 (18 ± 0.4)
0.5 27 ± 0.5 (23 ± 0.5)
0.66 34 ± 0.6 (29 ± 0.6)

including the reduction in the SDR when the spdf basis set
is used. The experimental SDR is reproduced using a local
moment value close to 0.35 μB for the spd basis and closer to
0.4 μB for the spdf basis.

We have calculated the SDR for fcc Co, which is the stable
phase near Tc. (The hcp-phase is stable up to ∼800 K). There
is some controversy regarding the experimental SDR for Co.
Two different values were reported: 50 μ� cm (Ref. 35) and
31 μ� cm (Ref. 13). The discrepancy is likely due to the
insufficient number of data points above Tc

13 and the proximity
of the melting point Tm = 1768 K to the Curie temperature
Tc = 1400 K.

The self-consistent local moment of Co in the DLM
calculation is 0.964 μB for the spd basis and the corresponding
SDR is 38.1 μ� cm. The lower experimental value of
31 μ� cm can be reproduced with a FSM moment of
0.85 μB; the FSM moment of 1.1 μB results in the SDR of
46.2 μ� cm, which is close to the higher experimental estimate
of 50 μ� cm. As for Ni, the SDR calculated using the spdf

basis set are somewhat smaller. For example, for the FSM
local moment of 0.9 μB the SDR is 34.3 (30.1) μ� cm for the
spd (spdf ) basis set, respectively. Note that the value of SDR
obtained in the hybrid approach of Ref. 20 is 100–180 μ� cm
depending on the value of the lattice constant.

B. Ordered metallic alloys Ni3Mn and Fe3Si

In this section we calculate the SDR for more complicated
alloys, including Cu3Au-ordered Ni3Mn and D03-ordered
Fe3Si. It should be mentioned that, e.g., Fe3Si exhibits a
complex pressure-dependent metamagnetic behavior.36 Here
we limit ourselves to ambient pressure where studied systems
are conventional ferromagnets.

The Cu3Au lattice is formed by four interpenetrating simple
cubic sublattices occupied by Ni and Mn atoms; the three Ni
sublattices are equivalent. The experimental SDR value of
72 μ� cm was extracted from Fig. 7 of Ref. 1 by subtracting
the phonon part. The experiment also shows a nonzero residual
resistivity (about 20 μ� cm) which may be due to chemical
disorder or off-stoichiometry. As in pure fcc Ni, the local
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moments on Ni atoms collapse to zero in the DLM state. We
made two calculations, one based on the self-consistent DLM
potentials (spd basis) with spin disorder limited to Mn atoms
(their local moment is 3.179 μB), and another one with the
DLM potentials constructed from the collinear ferromagnetic
ground state15 [the local moments on Ni (Mn) sites are 0.467
(3.183) μB]. The local moment of Mn is rigid and essentially
independent on the magnetic state. The calculated SDR values
for the two calculations are, respectively, 23.6 μ� cm and
58.9 μ� cm. The latter value, which accounts for the
additional spin disorder on Ni atoms, agrees reasonably well
with experiment, considering the fact that we assumed ideal
stoichiometry.

As mentioned above, in some Ni-based alloys, such as fcc
NiCo and NiFe, the spin-orbit coupling has a pronounced
effect on the resistivity due to the mixing of the weakly-
disordered majority and strongly-disordered minority-spin
channels, which gives rise to an additional contribution to
the resistivity.29 The situation in the DLM state of Ni3Mn
is different, because both channels are disordered. We have
calculated the SDR using DLM potentials constructed from
the ferromagnetic state and including the spin-orbit coupling
perturbatively.29 The resulting SDR of 62.0 μ� cm is
only slightly larger compared to the scalar-relativistic case
(58.9 μ� cm). These results suggest that the Ni atoms in
Ni3Mn retain effective local moments above Tc as in the known
case of fcc Ni (see Sec. III A2).

The calculations for D03-ordered Fe3Si were also
performed using the spd basis. Due to symmetry, there are two
inequivalent Fe sites in this alloy. The sites (Fe1) surrounded
by eight Fe atoms have a large and robust local moment of
2.555 μB, while sites (Fe2) surrounded by four Fe and four
Si atoms have a significantly reduced moment of 1.320 μB.
There is also a small local moment on the Si sites (−0.095
μB). In the DLM state, the Fe1 local moments remain
essentially the same (2.719 μB), but the Fe2 local moments
collapse to zero. The Si local moments are also zero in
the DLM state. As above for Ni3Mn, we performed two
calculations, one based on self-consistent potentials in the
DLM state with spin disorder only on Fe1 sites, and another
one with the DLM potentials taken from the ferromagnetic
ground state. The resulting SDR values are 146.7 μ� cm and
181.9 μ� cm, respectively. These results compare well with
the experimental value of about 170 μ� cm.37

C. Heusler alloys Ni2MnX , X = In, Sn, Sb

Heusler alloys is another group of magnetic metals with
a complex lattice structure for which experimental data are
available in the literature. These alloys have L21 structure
formed by four interpenetrating fcc sublattices mutually
shifted along the body diagonal with the sublattice occupation
Ni-Mn-Ni-X. We employ the spdf basis and the DLM model
for the Mn sublattice. Small induced magnetic moments on
the Ni and Sb atoms in the ferromagnetic state collapse in the
DLM state, and their effect is neglected. The number of the
valence electrons increases in the series from In to Sn to Sb.

The calculated KG-DLM SDR are summarized in Table III
together with the experimental data. The SDR for Ni2MnSn
was also calculated using the supercell LB approach.15 (See

TABLE III. Calculated theoretical SDR (ρth) in Heusler alloys
Ni2MnX (X = In, Sn,Sb) in the KG-DLM approach are compared
with corresponding experimental data (ρexp) (Refs. 39 and 40). The
DLM is limited to the Mn sublattice. For all alloys the experimental
lattice constants were used. See the text for discrepancy between
theory and experiment for Ni2MnSb alloy.

Alloy ρth (μ� cm) ρexp (μ� cm)

Ni2MnIn 42.6 44.1
Ni2MnSn 50.4 46.6
Ni2MnSb 73.7 31–35

Appendix B for details.) The KG-DLM and LB calculations
for Ni2MnSn agree again very well.38

There is good agreement with experiment for Ni2MnSn (see
also Ref. 19) and Ni2MnIn, but not for Ni2MnSb, where the
calculated SDR is more than twice larger. The origin of this
discrepancy in Ni2MnSb can be traced back to the fact that
the structure of some Heusler alloys depends sensitively on
the sample preparation and annealing. This can be clearly seen
from the residual resistivities at T = 0 K, which are negligible
for Ni2MnSn and Ni2MnIn and rather large (65–68 μ� cm)
for Ni2MnSb.39,40

We have considered Mn-Sb swapping (B2 disorder)
as a likely source of the residual resistivity, which is
typical for some Heusler alloys like, e.g., Ni2MnAl alloy.41

Corresponding theoretical calculations favor the antiparallel
orientation of Mn[Mn] and Mn[Al] moments.42 Possible
short-range effects due to a chemical disorder are neglected
here due to the use of the CPA. These effects can be
included, however, in the framework of the LB approach. It
is not anticipated that short-range interactions would have
a noticeable effect on the electronic band structure of the
Heusler alloys.43 The present total energy calculations also
confirm the antiparallel orientations of Mn[Sb] moments with
respect to Mn[Mn] moments (ferrimagnetic state). As before,
only Mn atoms were treated within the DLM method, but now
on both Mn and Sb sublattices. The difference between the
resistivities in the DLM and the ground state (with antiparallel
alignment of Mn local moments on the “wrong” sublattice)
corresponds to the measured SDR. From the data of Ref. 39
and the fact that the Curie temperature ranges from 344 K39 to
360 K,40 we estimated the SDR as 30.5–36 μ� cm. This value
can be compared with the calculated values of 55.1 μ� cm and
44.0 μ� cm for 15% and 20% Mn-Sb swapping, respectively.
Thus, the Mn-Sb swapping strongly reduces the calculated
SDR. As a result, there is a fair agreement between
theory and experiment considering the uncertainties of the
accurate extraction of the SDR from measured T -dependent
resistivities and of the assumptions about the source of the
residual resistivity.

D. Remark on the resistivity of bcc-Fe below Tc

The theoretical determination of the T -dependent resistivity
is a difficult problem. One approach to this problem is to
construct supercells and average the conductance over the
real-space spin configurations modeled either by a mean-field
distribution or by Monte-Carlo simulations for the classical
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Heisenberg model. Although the latter approach includes
a number of approximations, it is particularly suitable for
including magnetic short-range order (MSRO) effects.15

A simpler approach can be used for systems with weak
MSRO, such as bcc Fe15 or some Heusler alloys.19 As
mentioned in the Introduction, for very low and intermediate
temperatures the resistivity varies with temperature as ρ ∝
T 2 and ρ ∝ [1 − M2(T )/M2

0 ], respectively. The tempera-
ture dependence of the total resistivity appears to be well
approximated by ρ(T ) = ρo + AT + CT 2 in some Heusler
alloys.39 Here ρo is the residual resistivity, the linear term A

is extracted from the high-temperature region of the resistivity
and subtracted (together with ρo) from the total resistivity. The
remaining magnetic contribution can then be fitted to CT 2.

It should be emphasized that such dependence represents
only an empirical observation for some ferromagnets. From
the theoretical point of view, it is interesting that in such
cases the coefficient C = ρ(Tc)/T 2

c . If one identifies ρ(Tc)
with ρ(DLM) evaluated in the KG-DLM or DKG-DLM
approaches, and Tc is also determined from first principles,
one can estimate the T dependence of resistivity and compare
it with experiment. Such a program was successfully tested for
Ni2MnSn and Pd2MnSn Heusler alloys,19 and here we apply
it to bcc Fe.

Using the spdf basis and the DLM state as a reference for
constructing the Heisenberg Hamiltonian, we obtained Tc =
1105 K in the random-phase approximation (see Ref. 44 for
computational details.) The experimental value is 1040 K. The
calculated SDR is 71.5 (75.2) μ� cm for KG-DLM (DKG-
DLM), respectively. We thus estimate C = 0.586 (0.616) ×
10−4 μ� cm/K2.

To compare with experiment, we used the electrical
resistivity data for Fe from Ref. 13 and subtracted the phonon
part as indicated above (the experimental residual resistivity is
very small). The result is C = 0.647 × 10−4 μ� cm/K2 in fair
agreement with the KG-DLM and DKG-DLM calculations.

IV. CONCLUSIONS

We have presented a simple theory of paramagnetic spin-
disorder resistivity based on the disordered local moment
model combined with the Kubo-Greenwood linear-response
technique and applied it to magnetic transition metals, ordered
Ni3Mn and Fe3Si compounds, and to Ni2MnX (X = In,
Sn, Sb) Heusler alloys. The results agree reasonably well
with experimental data and with the results of the supercell
Landauer-Büttiker approach (bcc Fe, fcc Ni, and Ni2MnSn).
The case of Ni (and partly also Co) requires a special approach
in which the FSM-DLM method is used. Present results, in an
agreement with a recent study15 indicate an interesting relation
between the local moments in the magnetically disordered state
and the SDR, in particular in cases where the local moment is
induced by the longitudinal spin fluctuations (such as fcc Ni).27

We have also calculated the SDR for ordered Ni3Mn and
Fe3Si alloys. The local moments on Ni in Ni3Mn and on one
of the Fe sublattices in Fe3Si collapse to zero in the DLM
state, but in reality these moments may persist due to quantum
and thermal fluctuations. In order to evaluate their effect on
SDR, we used two models with potentials taken either from
the DLM state or from the ferromagnetic state. For Ni3Mn our

results suggest that Ni atoms retain their local moments above
Tc. In Fe3Si the SDR in both models is close to experiment, so
that a clear conclusion can not be drawn.

The SDR value in Ni2MnSb can be explained only by
assuming the presence of disorder in an otherwise stoichio-
metric alloy. Other studied Heusler alloys exhibit only very
small residual resistivity, and the KG-DLM model applied
to ideal systems works well. Finally, we have shown that a
reasonable description of the resistivity below Tc is possible
for metals with a weak magnetic short-range order like, e.g.,
bcc-Fe15 or some Heusler alloys.19 We conclude that the linear
response calculation of the spin-disorder resistivity within
the DLM model is a rather fast and accurate alternative to
the computationally demanding averaging of the Landauer-
Büttiker conductance over spin-disorder configurations in
supercells. This method is applicable as long as uncorrelated
spin disorder is being considered.
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APPENDIX A: ALLOY ANALOGY FOR CONDUCTIVITY
OF THE DLM STATE

The residual conductivity of a random alloy reduces within
the TB-LMTO-CPA formalism to expressions of the form

Tr〈g(z)vg(z′)v〉 = Tr{ḡ(z)vḡ(z′)v} + Tr{ḡ(z)�(z,z′)ḡ(z′)v},
(A1)

where the symbol 〈. . . 〉 denotes configuration averaging,
the g(z) is the auxiliary Green’s function, the v denotes
a nonrandom effective velocity operator, and the energy
arguments z,z′ = EF ± i0, where the EF is the alloy Fermi
energy.17 The first term in Eq. (A1) leads to the coherent
contribution to the conductivity, with ḡ(z) = 〈g(z)〉, while the
second term represents the incoherent (vertex) contribution.
The nonrandom quantity �(z,z′) is given as a sum over lattice
sites, �(z,z′) = ∑

R �R(z,z′), where the individual terms can
be obtained from a set of coupled linear equations

�R(z,z′) = 〈tR(z)ḡ(z)vḡ(z′)tR(z′)〉
+

∑

R′(	=R)

〈tR(z)ḡ(z)�R′(z,z′)ḡ(z′)tR(z′)〉, (A2)

where the tR(z) denotes the random single-site T-matrix
operator at the Rth site defined with respect to the effective
CPA medium, see Ref. 18 for details. The solution of these
equations can be obtained as a limit for n → ∞ of the sequence
�

(n)
R (z,z′), n = 1,2, . . . , which is defined recursively by

�
(1)
R = 〈tRḡvḡtR〉,

(A3)
�

(n+1)
R = �

(1)
R +

∑

R′(	=R)

〈
tRḡ�

(n)
R′ ḡtR

〉
,
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with energy arguments z and z′ omitted here and below for
brevity.

The application of this approach to the DLM state with local
magnetic moments pointing randomly in all directions leads to
the average Green’s function ḡ(z) that is spin independent. In
each spin channel, the ḡ is defined from an equiconcentration
random alloy of two atomic species, corresponding to moments
pointing up and down which lead to single-site T-matrices
t
↑
R and t

↓
R satisfying the CPA condition t

↑
R + t

↓
R = 0.16 For

conductivity calculations, the effective velocity operator is
given by the commutator relation v = −i[X,S], where the X

represents the coordinate operator and the S denotes the TB-
LMTO structure-constant matrix.17 Consequently, the v is spin
independent as well and the coherent part of the DLM conduc-
tivity can thus be evaluated very easily in the alloy analogy.16

For the vertex part of the conductivity, one can write
the spin-independent operators (matrices) ḡ, v, and ḡvḡ in
Eq. (A3) in the form

M = m ⊗ 1, (A4)

where the first factor denotes a matrix in the site- and orbital-
index RL (L = �m) while the second factor is the unit matrix
in the spin index s (s =↑ ,↓). In this notation, the single-
site T-matrix for the Rth local moment pointing in a random
direction nR can be written as

tR = t
↑
R + t

↓
R

2
⊗ 1 + t

↑
R − t

↓
R

2
⊗

∑

α

nRασα, (A5)

where α = x,y,z, the nRα are components of the random unit
vector nR, and the σα denote the Pauli spin matrices. By using
the identity σ 2

α = 1 and the obvious configuration averages
〈nRα〉 = 0 and 〈nRαnRβ〉 = δαβ/3, one can prove easily that
for an arbitrary nonrandom spin-independent operator M ,
Eq. (A4), the following averaging rule is valid:

〈tRMtR〉 = μ ⊗ 1, μ = 1
2 t

↑
Rmt

↑
R + 1

2 t
↓
Rmt

↓
R. (A6)

This means that the resulting average 〈tRMtR〉 is spin inde-
pendent and that it can be obtained again by employing the
equiconcentration alloy of up- and down-moments. The use
of Eq. (A6) in the recursive sequence (A3), i.e., for M = ḡvḡ

and M = ḡ�
(n)
R′ ḡ, n = 1,2, . . . , proves that the alloy analogy

is applicable also for evaluation of the vertex part of the DLM
conductivity.

FIG. 1. Area-resistance product RA vs the thickness L
(4 monolayers per lattice constant a) of the disordered region for
Ni2MnSn. Each point corresponds to an average of 15 random
spin-disorder configurations.

APPENDIX B: LANDAUER-BÜTTIKER
CALCULATION FOR Ni2MnSn

The Landauer-Büttiker supercell method used as a bench-
mark to calculate the SDR of the Heusler alloy Ni2MnSn
was described in Ref. 15. The spd basis set and the Barth-
Hedin exchange-correlation potential45 were used to solve the
electronic structure problem and for transport calculations.
The ground-state local moments and total density of states
agree well with previously reported data.19,46 For the transport
calculations, a 2 × 2 lateral cubic supercell was used. Good
convergence was achieved by integrating the conductance
over the two-dimensional Brillouin zone using a 15 × 15
k-point mesh and averaging over 15 random noncollinear spin
distributions (spin disorder applied to Mn moments only).
The active disordered region was varied in length from 4
monolayers to 104 monolayers, as shown in Fig. 1, reaching
the Ohmic regime. The calculated SDR for Ni2MnSn was
47.7 ± 0.4 μ� cm, which is in excellent agreement with the
DLM method and with experiment.
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