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Calculations of NMR chemical shifts with APW-based methods
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We present a full potential, all electron augmented plane wave (APW) implementation of first-principles
calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach
[Pickard and Mauri, Phys. Rev. B 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis
by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner
as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping
atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by
comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids
and molecules with available published data.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) is a widely used
experimental technique in structural chemistry.1 It measures a
fundamental property of any material, namely, its response
to an external magnetic field. An external magnetic field
B induces an electric current jind in the sample and this
current is the source of an induced magnetic field Bind. NMR
experiments measure the induced field at the nucleus by
measuring the transition energies related to the reorientation
of the nuclear magnetic moment. Because the induced current
and therefore the induced field depends strongly on the
atomic and electronic structure of the investigated material,
the NMR measurements provide an information about these
properties. Nowadays, NMR is routinely used for studying the
structures of molecules and solids. In the case of molecules,
the interpretation of the measured spectra is often based on a
set of empirical rules that capture the indirect relation between
the atomic structure and the NMR spectra.2 However, for some
systems, the response depends on the details of the electronic
structure, which makes the interpretation of experimental data
rather difficult. At this point ab initio calculations became
extremely helpful in assigning the chemical shifts to specific
sites. This is especially true for solids, where empirical rules
are much more difficult to develop.3

Until now several methods of ab initio calculation of NMR
chemical shifts for molecules4,5 and solids have been described
in the literature.6–10 At least for solids, they solve the electronic
structure within density functional theory (DFT)11,12 and most
of them use a perturbative approach to construct the response
current, which is then integrated utilizing the Biot-Savart law
to calculate the induced magnetic fields at the nuclei and
the corresponding magnetic shielding factors σ . The task of
computing the induced current is complicated by the fact that
the magnetic field breaks translational symmetry. Moreover,
the position operator, which explicity enters the perturbed
Hamiltonian, is not well defined for extended systems. The
first method that overcomes this difficulty, was proposed
by Mauri, Pfrommer, and Louie (MPL), where the external
magnetic field is modulated with a finite wave vector.6 The
response is calculated taking the limit at infinite length of
the modulation vector. It can be shown that for finite systems

the MPL method is equivalent to a variant of the continuous
set of gauge transformations (CSGT) method.13 The MPL
method has been derived and implemented for plane-wave
based pseudopotential codes, however, it neglects the effects
of the pseudoization of the wave functions on the induced
current, which should be considerable in the core region of
heavier atoms. Despite of this fact, it has been used in several
interesting applications, but limited to light elements and with
the use of hard pseudopotentials.14–19 This drawback has been
removed by Pickard and Mauri.8 Their approach operates
within the projector augmented-wave method (PAW)20 and
defined the PAW transformations such that they ensure correct
gauge (translational) symmetry of the pseudo-wave-function
in the presence of the external magnetic field. Due to this new
form, the method is referred in literature as gauge-including
projector augmented-wave (GIPAW) method. Furthermore,
the GIPAW approach has been reformulated such that it can be
based on ultrasoft-pseudopotential calculations.21 The method
has been shown to be very useful and numerous applications
covering a broad spectrum of materials from minerals22–26

to molecular crystals27–29 have been published. An exten-
sive list of applications can be found at Ref. 30. Another
approach, proposed by Sebastiani and Parrinello exploits the
exponentially decaying character of localized Wannier orbitals
combined with a saw-shaped “periodized” position operator,7

such that the discontinuity due to the periodization appears
in a region where the Wannier functions vanish. The main
advantage of this method is that for large systems it requires
considerably lower computational efforts than MPL or GIPAW.
Therefore, it is easier to apply this method to problems that
require large unit cells such as ab initio molecular dynamics
simulations of biological systems.31 This approach has been
implemented not only in pure plane-wave based codes, but
also in an all-electron Gaussian and augmented-plane-wave
method (GAPW).32,33 Recently, a “converse” approach, that
does not rely on perturbation theory has been introduced.9,34

In this case, the shielding tensor is obtained from the derivative
of the orbital magnetization with respect to the application of a
localized magnetic dipole. In order to calculate the necessary
magnetization, the ground-state problem with an additional
term in the Hamiltonian describing the potential generated by
the localized dipole, has to be solved. This usually requires
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a supercell approach to ensure a proper separation of the
localized dipoles.

In the present paper, we describe the formalism of NMR
chemical shift calculations for the full-potential all-electron
linear augmented-plane-wave (LAPW) method.35 The actual
implementation has been realized in the WIEN2k code.36 In this
method, we do not impose any restriction or approximation to
the induced current density. Also the integration of the all-
electron current is performed without further approximations.
The paper is organized as follows. In order to keep the
presentation self-contained, we shortly discuss in the next
section the application of the DFT perturbation theory for the
computation of the induced current density in the presence of
a uniform external magnetic field. Next, the details related to
the specific form of the LAPW basis are presented, focusing
on the integration of the induced all-electron current, as this is
inherently different from the one applied in the pseudopotential
codes. In Sec. III, we test our implementation, focusing on the
basis set quality by showing that our method is able to repro-
duce the diamagnetic response of isolated atoms. Section IV
contains the final validation of the method by comparing the
calculated shielding for several solids and molecules with the
available published data.

II. IMPLEMENTATION DETAILS

A. Induced current in DFT perturbation theory

For a small external magnetic field, a linear relation between
the induced and external field holds:

Bind(R) = −←→σ (R)B, (1)

where ←→σ is the absolute chemical shift tensor. In order to
calculate the Bind field induced by the external field B, we
apply the Biot-Savart law:

Bind(R) = 1

c

∫
d3rjind(r) × R − r

|r − R|3 , (2)

where the induced current density jind(r) is the key component.
In the case of nonmagnetic and insulating materials, only the
orbital motion of the electrons is affected by the magnetic
field and contributes to the induced current jind(r). The single-
particle Hamiltonian in the presence of the magnetic field takes
the following form:

H = 1

2

[
p + 1

c
A(r)

]2

+ V (r), (3)

where p is the momentum operator, V (r) is the effective single-
particle potential, and A(r) is the vector potential related to the
external magnetic field with B = ∇ × A(r). In the symmetric
gauge, A(r) = 1

2 B × r and the Hamiltonian becomes

H = 1

2
p2 + V (r) + 1

2c
r × p · B + 1

8c2
(B × r)2, (4)

where the first two terms constitute the unperturbed Hamilto-
nian, and the third term is the first-order perturbation [H (1)]
with respect to the external field B:

H (1) = 1

2c
r × p · B. (5)

The induced current density jind is calculated as first-order
variation of the expectation value of the current operator with
respect to the external field B. The current operator in the
presence of the magnetic field in the chosen gauge has the
following form:

J(r′) = Jp(r′) + Jd (r′), (6)

Jp(r′) = −p|r′〉〈r′| + |r′〉〈r′|p
2

, (7)

Jd (r′) = −B × r′

2c
|r′〉〈r′|, (8)

where Jp and Jd are the paramagnetic and diamagnetic current
operators. The form of the diamagnetic operator is strictly
related to the chosen gauge. Therefore partitioning of the total
current into paramagnetic and diamagnetic contributions does
not have a fundamental meaning. Within density functional
theory, the total current density is evaluated as a sum of
expectation values of the current operator applied to the
occupied Kohn-Sham states. Because our goal is to calculate
the induced current, the sum will involve only the first-order
terms with respect to the external field:

jind(r′) =
∑

o

[〈
�(1)

o

∣∣J(0)(r′)
∣∣�(0)

o

〉 + 〈
�(0)

o

∣∣J(0)(r′)
∣∣�(1)

o

〉
+ 〈

�(0)
o

∣∣J(1)(r′)
∣∣�(0)

o

〉]
, (9)

where �(0)
o represents an occupied orbital of the unperturbed

Hamiltonian. J 0(r′) is the unperturbed part of the current
operator and equal to the paramagnetic current operator. J 1(r′)
is the first-order perturbation of the current and corresponds
to the diamagnetic current operator. �(1)

o is the first-order per-
turbation of �(0)

o , projected on the subspace of the unoccupied
states. It is evaluated using the standard perturbation theory
formula ∣∣�(1)

o

〉 = G(εo)H (1)
∣∣�(0)

o

〉
, (10)

where G is the Green function operator:

G(ε) =
∑

e

∣∣�(0)
e

〉〈
�(0)

e

∣∣
ε − εe

, (11)

and the sum is running over the empty (unoccupied) Kohn-
Sham orbitals. Including expressions for J 0(r′), J 1(r′), and
�(1)

o into Eq. (9), we obtain

jind(r′) =
∑

o

Re
[〈
�(0)

o

∣∣Jp(r′)G(εo)H (1)
∣∣�(0)

o

〉]]

− 1

2c
ρ(r′)B × r′. (12)

The first and second terms in this formula represent the para-
magnetic and diamagnetic current contributions to the total
induced current. These terms individually depend on the gauge
origin, or in the symmetric gauge, on the choice of the origin
of the unit cell and they may become large and opposite in
sign. This represents a problem for practical calculations where
finite basis sets are used for computing the unperturbed wave
functions. In order to avoid such convergence problems, it
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is convenient to rewrite the diamagnetic contribution using a
commutator:

ρ(r′)B × r′ = −
∑

o

〈
�(0)

o

∣∣1

i
[B × r′ · r,Jp(r′)]

∣∣�(0)
o

〉
]. (13)

After employing the generalized f-sum rule,8 the diamagnetic
current is expressed using the Green function similarly to the
paramagnetic term:

jind(r′) = 2
∑

o

Re

[〈
�(0)

o

∣∣Jp(r′)G(εo)H (1)
∣∣�(0)

o

〉

− 〈
�(0)

o

∣∣Jp(r′)G(εo)
B × r′

2c
· v

∣∣�(0)
o

〉]
, (14)

where v = 1/i[r,H (0)]. Combining these two terms together,
we arrive at a more compact formula for the induced current:

jind(r′) = 1

c

∑
o

Re
[〈
�(0)

o

∣∣Jp(r′)G(εo)((r − r′) × p · B)
∣∣�(0)

o

〉]
.

(15)

As mentioned before, in an extended system the position
operator is not well defined. This difficulty can be overcome by
modulating either the magnetic field6 or the position operator.8

We follow the latter choice, where the position operator is
replaced with the limit:

(r − r′) · ûi = lim
q→0

1

2q
[eiqûi ·(r−r′) − e−iqûi ·(r−r′)], (16)

where û is the unit vector of the Cartesian frame of reference,
and q is the modulation wave vector. Consequently, the
induced current has to be evaluated by taking the limit

jind(r′) = lim
q→0

1

2q
[S(r′,q) − S(r′, − q)], (17)

where S(r′,q) is defined as

S(r′,q) = 1

c

∑
x,y,z

∑
o

Re

[
1

i

〈
�(0)

o

∣∣Jp(r′)G(εo)

× B × ûi · eiqûi ·(r−r′)p
∣∣�(0)

o

〉]
. (18)

The sum in this formula runs over all occupied states. For
periodic systems, this involves a summation over the whole
Brillouin zone. However, in this case, the eigenvectors are
Bloch functions �

(0)
i,k(r) = eik·ru(0)

i,k, and the matrix elements
of the paramagnetic current operator are diagonal with respect
to the k vector. Therefore we define a k-dependent Green
function

Gk(ε) =
∑

e

∣∣u(0)
e,k

〉〈
u

(0)
e,k

∣∣
ε − εe,k

, (19)

and the paramagnetic current operator in the basis of Bloch
states

Jp

k,k′ (r′) = − (−i∇ + k)|r′〉〈r′| + |r′〉〈r′|(−i∇ + k′)
2

, (20)

the expression for S(r′,q) in the periodic system can be written
as

S(r′,q) = 1

cNk

∑
α=x,y,z

∑
o,k

Re

[
1

i

〈
u

(0)
o,k

∣∣Jp

k,k+qα
(r′)

×Gk+qα
(εo)B × ûi · vk,k+qα

∣∣u(0)
o,k

〉]
, (21)

where vk,k′ = −i∇ + k′. Equation (17) together with Eq. (21)
constitute the final expressions for computing the current
density, which is valid for any full-potential method. A more
detailed derivation of these formulas can be found in Refs. 8
and 21 for the PAW and ultrasoft pseudopotential framework.
In the following section, we apply it to the particular case of
the LAPW basis set.

B. Induced current in LAPW

In the LAPW method,35 the unit cell is partitioned into
nonoverlapping atomic spheres (Sα) centered on the nuclei,
and the interstitial region. The basis functions are plane waves
in the interstitial region, that are augmented by a linear
combination of spherical harmonics times corresponding
radial functions inside each atomic sphere:

φLAPW
k,G (r) =

⎧⎪⎨
⎪⎩

1√
�
ei(G+k)·r, r ∈ I,∑

lm

[
A

α,k+G
lm uα

l (r,El)

+B
α,k+G
lm u̇α

l (r,El)
]
Ylm(r̂), r ∈ Sα,

(22)

where A
α,k+G
lm and B

α,k+G
lm are derived such that the basis

functions are continuous in value and slope at the sphere
boundary of each atom. The radial functions ul(r,El) are the
solutions of the scalar relativistic Schrödinger equation in a
spherical potential evaluated at the energies El , where l denotes
the angular momentum quantum number. u̇l is the energy
derivative of ul(r,El) taken at El . The LAPW basis functions
capture efficiently the energy dependence of the radial wave
function around the energies El due to the presence of the u̇l

term. However, in order to cover a larger energy region, for
instance, at energies where the number of nodes of the radial
function is different from that at El (semicore states or higher
conduction band states), additional radial basis functions are
supplied in form of so-called local orbitals (LO):

φ
LO,α,i
lm,k (r) =

⎧⎪⎨
⎪⎩

0, r ∈ I,[
A

i,α,k
lm uα

l (r,El) + B
i,α,k
lm u̇α

l (r,El)

+C
i,α,k
lm u

α,i
l

(
r,Ei

l

)]
Ylm(r̂), r ∈ Sα.

(23)

The local orbitals vanish at the sphere boundary and in the
interstitial, therefore they are not coupled to the plane waves.
The A

α,k
lm , B

α,k
lm , and C

α,k
lm are determined from normaliza-

tion and “continuity in value and slope” conditions. In the
APW + lo37,38 formulation for the linearization, the continuous
slope condition has been dropped and the linearization term
containing u̇l(r,El) is moved to an additional local orbital (lo).
Consequently, for both the LAPW and APW + lo method, the
resulting wave functions are represented as a Fourier series in
the interstitial region and as a (lm) series inside the spheres:

�n,k(r) =
{

1√
�

∑
G Cn

Gei(G+k)·r, r ∈ I,∑
lm W

n,α,k
lm (r)Ylm(r̂), r ∈ Sα,

(24)
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where the expression for W
n,α,k
lm (r) involves summation over

the reciprocal lattice vectors G and different radial functions
used to define augmented plane waves and local orbitals:

W
n,α,k
lm (r) =

∑
G,i

CG,i

[
A

α,k,G,i
lm uα

l (r,El) + B
α,k,G,i
lm u̇α

l (r,El)

+C
i,α,k
lm u

α,i
l

(
r,Ei

l

)]
Ylm(r̂). (25)

Such an expansion of the wave function allows to describe
its true nodal structure without any approximations. This is
true also for any quantity that is computed from the wave
functions (e.g., the charge density). Following an APW style,
we represent our induced current density as a Fourier series in
the interstitial and a spherical harmonics expansion inside the
spheres:

jind(r) =
{∑

G Re[jGeiG·r], r ∈ I,∑
lm Re

[
jαlm(r)Ylm(r̂)

]
, r ∈ Sα,

(26)

where jG are the Fourier coefficients and jαlm(r) are radial
functions that depend only on the distance from the nucleus α.
Following Eq. (17), both jG and jαlm(r) are expressed as finite
derivatives:

jG = lim
q→0

1

2q
[SG(q) − SG(−q)], (27)

jαlm(r) = lim
q→0

1

2q
[Slm(r,q) − Slm(r, − q)]. (28)

This becomes obvious when we write S(r,q) from Eq. (21) in
the following form:

S(r,q) = 1

cNk

∑
α=x,y,z

∑
k

∑
o

{
1

i

[
Ao

k,qα
(r) + Bo

k,qα
(r)

]}
,

(29)

where Ao
k,qα

(r) and Bo
k,qα

(r) are

Ao
k,qα

(r′) = 〈uo,k|(p + k)|r′〉〈r′∣∣u(1)
o,k+qα

〉
, (30)

Bo
k,qα

(r′) = 〈uo,k|r′〉〈r′|(p + k + qα)
∣∣u(1)

o,k+qα

〉
, (31)

and the periodic part of the perturbed wave function |u(1)
o,k+qα

〉
is evaluated with∣∣u(1)

o,k+qα

〉 = (B × α̂) · Gk+qα
(εo)|(p + k)|uo,k〉. (32)

The quantities Ao
k,qα

(r′) and Bo
k,qα

(r′) are the vector fields
represented using plane waves and spherical harmonics in the
interstitial and inside spheres, respectively. The Fourier com-
ponents SG(q) are computed by multiplying the corresponding
components (〈uo,k|p|r′〉 and 〈uo,k|r′〉) and the step function
on a real-space mesh, and after that transforming the result to
reciprocal space. Due to the specific representation of the wave
function inside the atomic spheres, its periodic part is not easily
accessible. Therefore, in order to calculate the induced current
inside the spheres, it is more efficient to rewrite Eqs. (30)–(31)
using the full Bloch wave function:

Ao,e
k,qα

(r′) = e−iq·r′ 〈�o,k|p|r′〉〈r′∣∣�(1)
o,k+qα

〉
, (33)

Bo,e
k,qα

(r′) = e−iq·r′ 〈�o,k|r′〉〈r′|p∣∣�(1)
o,k+qα

〉
, (34)

where the perturbation |�(1)
o,k+qα

〉 is given by∣∣�(1)
o,k+qα

〉 = (B × α̂) · Gk+qα
(εo)|eiq·rp|�o,k〉. (35)

|u(1)
o,k+qα

〉 defined in Eq. (32) is the periodic part of |�(1)
o,k+qα

〉.
Applying Eq. (32) or (35) requires the evaluation of matrix
elements between occupied and all empty states,

C
o,e
k,qα

= (B × α̂) · 〈�e,k+qα
|eiq·rp|�o,k〉. (36)

Alternatively, the |�(1)
o,k+qα

〉 can be calculated by solving the
linear equation

(εo − H (0))
∣∣�(1)

o,k+qα

〉 = QH (1)|�o,k〉, (37)

where Q = 1 − ∑
o |�o,k+q〉〈�o,k+q| is the projector operator

on the empty states, H (0) is the unperturbed Hamiltonian, and
H (1) is the perturbation equal to (B × α̂)eiq·rp. In this case,
only matrix elements between occupied states at k-points k and
k + q need to be addressed. In the case of plane-wave based
methods, the alternative root has certainly the computational
advantage, however, in LAPW, the size of Hamiltonian is rather
moderate and the first option is no longer arduous and in solids
it seems to be computationally more efficient.

Because the modulation vector q is small, the function eiq·r
inside each sphere can be approximated by

eiq·r′ = eiq·rα eiq·(r′−rα ) ≈ eiq·rα [1 + iq · (r′ − rα)], (38)

where rα is the position of an atom, r = r′ − rα , r = |r′ − rα|.
Further, the vector (r − rα) is conveniently expressed using
spherical harmonics Y1,m(r̂):

(r − rα)x = −
√

2π

3
r[Y1,1(r̂) − Y1,−1(r̂)], (39)

(r − rα)y = i

√
2π

3
r[Y1,1(r̂) + Y1,−1(r̂)], (40)

(r − rα)z =
√

4π

3
rY1,0(r̂), (41)

where (r − rα)x,y,z are the Cartesian coordinates of (r − rα).
Introducing Eqs. (38) and (24) into Eqs. (33)–(36) and taking
derivatives according to Eq. (A1), we derive expressions
involving products of three spherical harmonics. Such products
can be further expanded into a series of spherical harmonics:

Yl′m′Y ∗
lmYl′′m′′ =

∑
LM

[∑
L′M ′

Gm′M ′m′′
l′L′l′′ GmM ′M

lL′L

]
YLM,

where GmMm′
lLl′ = ∫

YlmYl′m′Y ∗
LM are the Gaunt coefficient.

This allows to determine the radial expansion coefficients of
Ao

k,qα
(r′) and Bo

k,qα
(r′) for each LM . The final formulas are

presented in Appendix B.

C. Integration of the current density

In the next step, we integrate the current density jind(r)
according to Eq. (2). For this, we apply a method that is
a modification of the pseudocharge approach developed by
Weinert.39 Weinert’s method has been originally developed
and used for solving Poisson’s equation in the full-potential
LAPW method. The main reason for using this approach is, of
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FIG. 1. (Color online) The induced current density jind(r) calcu-
lated for an external field applied in the [001] direction. The density
is plotted in a plane perpendicular to the external field cutting through
Ba and O atoms. The color map in (a) represents the magnitude of
the current density, while the arrows give the direction of the current
vector, and (b) shows the (010) component of jind(r) along [100]
direction.

course, the fact that for infinite periodic systems, the integral
in Eq. (2) does not necessarily converge, and the effects related
to the size and shape of the sample have to be included. Those
finite-size effects are easily managed by transforming the
integral into reciprocal space. However, such a transformation
is not feasible due to the localized and oscillatory nature of the
all-electron current density (see, for instance, Fig. 1).

Before we present our procedure in detail, we will first
have a closer look at the particular contributions to the
Biot-Savart integral. As we can see in Fig. 1, the current density
is relatively low in the interstitial region and large around
the nuclei. Therefore we may expect that the contributions
to the induced field originating from the interstitial region
and the neighboring spheres are small. Indeed, as shown
in Fig. 2, the value of the integrand in Eq. (2) is small in
the interstitial and oscillates around zero inside neighboring
spheres. Furthermore, the main contribution to the absolute
shift comes from a relatively small volume around the nuclei,
as indicated in Fig. 2(c). Table I compares the contributions
to the isotropic shift from the atomic sphere to the total shift
calculated over all space. As we see, most of the shift for
a given nucleus is generated by the current inside the atom.
This statement is, in particular, valid for heavier nuclei and for
ionic compounds, but lighter nuclei and/or compounds with
strong covalent bonds have larger contributions from outside
the sphere. Although the difference is sometimes only a few
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FIG. 2. (Color online) (a) σI (r) = [jind(r) × R−r
|r−R|3 ]z [the [001]

component of the integrand of Eq. (2)] calculated for BaO. R points
to the central Ba atom, the external field points in the [001] direction,
the plotting plane is perpendicular to [001] and cuts through Ba and O
atoms. (b) 4πr2σI (r) plotted inside the central Ba sphere. (c) Partial

shielding σzz(r ′) = − ∫ r ′
0 dr[4πr2jind(r) × R−r

|r−R|3 ]z as a function of
the integration radius r plotted inside the Ba sphere.

ppm, it is far above the accuracy we would like to reach when
computing NMR shifts. Therefore an integration that goes
beyond the atomic sphere is necessary.

Our approach is based on the fact that the contribution to the
magnetic field induced at the nucleus at R1 originating from
a current inside a sphere centered at a different nucleus at R2

TABLE I. Comparison of the total isotropic shielding σtot with
the integral over the atomic sphere only (σsph) in ppm.

σtot σsph σtot − σsph

BaO (O) −455.6 −464.9 9.3
BaO (Ba) 4519.8 4521.6 −1.8
MgO (O) 204.5 197.7 6.8
MgO (Mg) 5709.0 5742.3 −33.3
SrF2 (F) 226.0 232.1 −6.1
SrF2 (Sr) 2996.2 3002.8 −6.6
NaF (F) 406.3 404.4 −1.9
NaF (Na) 572.8 578.5 −5.7
Si 413.6 399.6 14
diamond 141.3 117.7 23.6
CF4 (F) 232 205 27
CF4 (C) 38 17 11
CH4 (H) 31 9 22
CH4 (C) 194 163 30

035132-5



ROBERT LASKOWSKI AND PETER BLAHA PHYSICAL REVIEW B 85, 035132 (2012)

depends solely on the multipole moments of the current in this
sphere, but not on the detailed shape of the current. Therefore
it is possible to replace the current density inside neighboring
spheres with another more convenient pseudodensity, which
has identical multipole moments. The alghorithm we use to
calculate the induced field can be summarized as follows.
According to Eq. (26), the Fourier expansion is valid only
in the interstitial region. Inside the spheres, we use a spherical
harmonics expansion. Because a Fourier expansion is easy to
integrate over the whole unit cell, we let the plane waves enter
the spheres and correct the corresponding spherical harmonics
expansion inside the spheres. This can be done by expanding
the plane waves inside the spheres into spherical harmonics
and spherical Bessel functions jl(Gr):

eiGr =
∑
lm

4πiljl(Gr)Y ∗
lm(Ĝ)Ylm(r̂), (42)

and the corrected current expansion is

jind(r) =
{∑

G jGeiG·r, r ∈ �,∑
lm jα,c

lm (r)Ylm(r̂), r ∈ Sα,
(43)

where jα,c
lm (r) = jαlm(r) − 4π

∑
G jGiljl(Gr)Y ∗

lm(Ĝ). Next, we
determine for each sphere a pseudocurrent density:

j̃sα(r) =
∑
lm

Qα
lmYlm(r̂)

n∑
η

aηr
νη , r ∈ Sα, (44)

where Qα
lm, aη, and νη are chosen such that the multipole

moments of the pseudo-current-density are equal to the
multipole moments q̃α

lm of the jα,c
lm (r) component of the current

in Eq. (43). This can be written in a compact form as

q̃α
lm = qα

lm − qPWα

lm ,

qα
lm =

∫
Sα

d3rY ∗
lm(r̂)rljind(r),

(45)

qPWα

lm =
√

4π

3
R3

αjG=0δl0

+
∑
G �=0

4π jGRl+3
α

jl+1(GRα)

GRα

eiGξαY ∗
lm(G),

where qα
lm are the multiple moments of the current inside

spheres and qPWα

lm are the moments of the plane waves entering
the spheres. The parameters Qα

lm are proportional to q̃α
lm,

Qα
lm = q̃α

lm

[∑
η

aη

R
l+νη+3
α

l + νη + 3

]−1

. (46)

In the interstital region, the pseudocurrent is by definition zero,
and we calculate the Fourier transform of the pseudocurrent:

j̃sG = 1

�

∫
d3r[

∑
α

j̃α(r)]e−iGr, (47)

j̃G can be evaluated with the following expression:

j̃sG = 4π

�

∑
lm,α

(−i)l(2l + 2n + 3)!!

(2l + 1)!!

×jl+n+1(GRα)

(GRα)n+1
qα

lme−iGξαYlm(Ĝ). (48)

In the next step, the pseudocurrent is added to the plane-wave
component of the current density and accordingly subtracted
from the spherical harmonic part inside spheres:

jind(r) =
{∑

G

(
jG + j̃sG

)
eiG·r, r ∈ �,∑

lm

[
jα,c
lm (r) − j̃α(r)

]
Ylm(r̂), r ∈ Sα.

(49)

At this point, the multipole moments of the current inside
spheres are equal to zero. This means that all spheres except
the one centered at the nucleus at which the induced field is
calculated (central sphere) do not contribute to the Biot-Savart
integral [see Eq. (2)]. The component of the current density
represented with the Fourier series correctly accounts for all
contributions except from the central sphere. The contribution
from this sphere can be calculated by integrating jS,α

ind (r) =∑
lm[jα,c

lm (r) − j̃α(r)]Ylm(r̂). For the sphere at R = 0, Eq. (2)
simplifies to

BS,α
ind (0) = −1

c

∫
α

d3rjind(r) × r̂

|r|2 . (50)

Gathering Eqs. (39)–(41) and (43) into this equation, we arrive
at the following expression for the sphere contribution to the
induced magnetic field:

BS,α
ind (0)= 1

c

√
4π

3

∑
lm

[∫ R

0
dr jqind(r)

][
1√
2

(
Gm01

l01 − Gm0−1
l01

)
,

i√
2

(
Gm01

l01 + Gm0−1
l01

)
,Gm00

l01

]
. (51)

The plane-wave component of the induced current is easily
integrated in reciprocal space. The Fourier transformation of
the Eq. (2) leads to

BPW
ind (G) = 4π

c

iG × (
jG + j̃sG

)
G2

, (52)

which is valid only for G �= 0. The G = 0 term corresponds
to the uniform field and it is determined by the shape of
the sample and the macroscopic magnetic susceptibility ←→χ
tensor. Adopting the experimental convention, we assume a
spherical sample for which

BPW
ind (G = 0) = 8π

3
←→χ B. (53)

The value of the induced field at the nucleus can be calculated
by back transformation

BPW,α
ind (Rα) =

∑
G

Bind(G)eiGRα . (54)

Finally, the total induced magnetic field evaluated at the
nucleus α is equal to

Bα
ind(Rα) = BPW,α

ind (Rα) + BS,α
ind (Rα). (55)

In order to calculate the macroscopic susceptibility ←→χ ,
which enters BPW

ind (G = 0), we follow Mauri and Pickard8 and
use

←→χ = lim
q→0

←→
F (q) − 2

←→
F (0) + ←→

F (−q)

q2
, (56)
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where Fi,j = (2 − δi,j )Qi,j and i and j are the indices of the

Cartesian coordinates. The tensor
←→
Q is calculated with

←→
Q (q) = 1

Nk�c2

∑
α=x,y,z

∑
o,k

Re
[
Ao

k,qα

(
Ao

k,qα

)∗]
, (57)

where Ao
k,qi

are the matrix elements between Bloch states at k
and k + qα:

Ao
k,qα

= α̂ × 〈uo,k|(p + k)
∣∣u(1)

k+qα

〉
. (58)

The 〈uo,k|(p + k)|u(1)
k+qα

〉 are the components of the factors
Co

k,q that appear in the expression for the current density and
are defined in Eq. (B10).

D. Core component

In our implementation of the LAPW method, the core
states are calculated by solving the Dirac equation with the
spherical part of the self-consistent potential. The core-valence
separation is determined with respect to the amount of core
charge that leaks out of the atomic sphere. In practice, we
require that each core orbital has more than 99.5% of its charge
inside the sphere, which usually results in a core-valence
energy threshold around 5–7 Ry bellow the top of the valence
bands. This also insures good orthogonality between core and
valence states. In the symmetric gauge centered at the nucleus,
the paramagnetic component of the induced current is zero,
and only the diamagnetic contribution needs to be considered:

jind(r′) = − 1

2c
ρcore(r′)B × r′. (59)

Expressing r′ as combination of Y1m spherical harmonics as in
Eqs. (39)–(41) and assuming that the core density ρcore(r′) is
spherical, the LM component of the core contribution to the
induced current is

jLM
ind (r) = −1

c

√
π

6
rρcore(r)B

× [
G−1M0

1L0 − G1M0
1L0 ,i

(
G1M0

1L0 + G−1M0
1L0

)
,
√

2G0M0
1L0

]
.

(60)

This contribution is added to the current generated by the
valence electrons. Afterwards, the total current is integrated
using the procedure described in the previous section.

Similarly, the core component of the macroscopic suscepti-
bility is calculated using a formula valid for an isolated atom:

χcore = − 1

6�c2

∑
i∈core

〈�i |r2|�i |〉. (61)

III. NUMERICAL TESTS

A. Basis enhancement

The flexibility of the LAPW basis set inside the atomic
spheres is limited to the energy region around the linearization
energies. Because in the perturbation method, the first-order
perturbation of the occupied eigenstates is expressed using
the unoccupied orbitals (via Green functions), the standard set
of the linearization energies and radial functions, optimal for
valence calculations, may not provide enough flexibility for

NMR calculations. A natural way in the LAPW method to
extend the flexibility of the basis set is adding additional local
orbitals. The concept of LOs has been originally developed
for dealing with semicore states,35 and in such cases the extra
radial function is evaluated at an energy close to the semicore
eigenvalues. For the NMR calculations, these local orbitals
have to be added at high energies. However, there are no clear
rules for determining the appropriate linearization energies. As
a first approach, the energies have been determined such that
the linearization errors of high-energy states are small, i.e., the
radial function of a certain l character at a given eigenstate
should be close to the solution of the radial Schrödinger
equation in the self-consistent potential at the corresponding
eigenvalue. However, it turns out that we do not need to
be that strict with the unoccupied states and this rather
cumbersome procedure is not necessary. The local orbitals
can be added in an almost arbitrary way, for instance, by
increasing the linearization energies in regular intervals. The
only issue that has to be taken care of is to prevent linear
dependency, i.e., to avoid a situation, when two different
radial functions are too similar. In order to automatize the
procedure and optimize the number of LO’s necessary to reach
the convergence, we determine them according to the number
of nodes of the corresponding radial functions. Consequently,
the linearization energies are set such that each of these
radial functions has zero value at the sphere boundary, and
the number of nodes inside the sphere of subsequent LO’s
increases by one. This procedure is illustrated in Fig. 3, where
we have plotted the first few l = 1 radial functions for the
Be atom. The first-order perturbation involves the momentum
operator and thus the main character of the perturbed wave
function is shifted toward higher orbital quantum number (the
momentum operator acting on spherical harmonics Ylm creates
harmonics Yl+1,m′ ). Therefore the enhancement of the basis set
is done for orbital quantum numbers up to lmax + 1, where lmax

is the character of the valence state. These additional LOs will
be referred further on as NMR-LO functions.

For a spherical density ρ(r), the NMR absolute shift is
proportional to the integral

σ (R) = 1

2c2

∫
dr3 ρ(r)

|R − r| , (62)

which can be easily evaluated. This creates an opportunity
to test our implementation. For that, we have calculated
the NMR absolute shifts for several closed shell atoms and

0 0.5 1 1.5 2 2.5
r (a.u.)

-1

0

1

2

u(
r)

num. of  nodes= 2
num. of  nodes= 3
num. of  nodes= 4
num. of  nodes= 5

FIG. 3. (Color online) The radial functions associated with the
first four NMR LOs of the Be atom with p character.
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compared them with the shifts determined using this simple
formula. The atomic reference densities have been obtained
by solving the radial Dirac equation within LDA, while the
LAPW calculations are performed using a scalar-relativistic
Hamiltonian. The results calculated for He, Ar, and Xe are
presented in Fig. 4. In all cases, NMR LOs of s, p, and d

character have been added to the basis set. The convergence
rate with respect to the number of additional LOs depends on
the atom. The calculations for He converge already with five
LOs, for Ar and Xe 20 and more extra LOs are necessary. It
is rather clear that the standard LAPW setup, i.e., without any
NMR LOs would result in NMR shieldings that are several

0 5 10 15

num. of nodes of top LO

20

30

40

50

60

σ 
  (

pp
m

)

6 6.5 7 7.5 8 8.5 9
RK

max

59.35

59.36

59.37

59.38

59.39

σ

0 5 10 15 20 25

num. of nodes of top LO

5920

5930

5940

5950

5960

σ 
  (

pp
m

)

6 6.5 7 7.5 8 8.5 9
RK

max

5960

5980

6000

σ

0 5 10 15 20

num. of nodes of top LO

1200

1210

1220

1230

1240

1250

σ 
  (

pp
m

)

6 6.5 7 7.5 8 8.5 9
RK

max

1235

1240

1245

1250

1255

σ

(a)

(c)

He

Xe

(b)
Ar

FIG. 4. The convergence of the absolute NMR shifts evaluated
with respect to the number of NMR LOs, or equivalently, to the
number of nodes of the highest LO in the configuration. In all three
cases, the LOs have been added only for the s, p, and d character
(the 4f states of Xe are in the core). The insets show the convergence
with respect to the LAPW basis size, which is expressed using the
product RKmax, where R is a radius of the smallest atomic sphere and
Kmax is the plane-wave cutoff.
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FIG. 5. (Color online) The convergence of the NMR shifts with
respect to the number of NMR LOs evaluated for the Be atom with
the 1s states treated as core or valence state, respectively.

ppm off from convergence. Furthermore, in these particular
cases, the shifts calculated from Eq. (62) are equal to 59.7 for
He, 1245.8 for Ar, and 5952.5 for Xe. The numbers calculated
with perturbation theory are 59.4 for He, 1250.6 for Ar, and
5954.5. Considering the errors introduced by the finite size of
the supercell and the differences in the radial functions used in
the perturbative calculations, the agreement is very good. The
insets in Fig. 4 display the convergence of the NMR shifts with
respect to the number of augmented plane waves. The basis set
quality in the LAPW method is traditionally expressed by the
product RKmax, where R is the radius of the smallest atomic
sphere and Kmax is the plane-wave cutoff. RKmax equal to
7 is the default WIEN2k value, which is a good compromise
between quality and performance for most quantities. As we
can see, the NMR shifts are not much more demanding in this
context.

Another issue we would like to mention here is the depen-
dence of the convergence rate of the NMR LOs on the local-
ization of the corresponding valence orbitals. To illustrate this,
we calculate the NMR shifts for the Be atom, where we treat
the 1s state either as core or valence state. The results are
displayed in Fig. 5. The converged value of the NMR shift
[148.14 ppm from perturbation theory versus 148.08 ppm
calculated from Eq. (62)] does not depend on how we treat
the 1s state, but the convergence rate with respect to the
NMR-LO basis set is much faster when this state is excluded
from the valence panel. This effect is directly related to the
fact that the first-order perturbation of the deep and localized
states are much more difficult to represent using our basis. In
Fig. 3, we may notice that all radial functions have a relatively
similar behavior around the nucleus. The radial functions are
always solutions of the radial Schrödinger (Dirac) equation in a
spherical potential, therefore they behave like rl for small r . As
a consequence, we need to add NMR LOs with relatively large
numbers of nodes in order to properly expand the perturbation
of the deep (core) states. A similar experience was made by
Friedrich et al.40 in GW calculations of ZnO using the LAPW
method. Also there, they had to use a large number of local
orbitals to increase the flexibility of the basis.

B. Comparison with GIPAW

In order to further validate our implementation, we compare
calculated isotropic shifts with the results obtained using
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TABLE II. The isotropic shielding for various nuclei and com-
pounds calculated with the LAPW method and the corresponding
GIPAW results from literature.

core LAPW GIPAW

H atom
LiH 26.9 26.3a

CH4 31.0 30.9b

SiH4 26.7 27.3b

C6H6 22.9 22.7b

C atom
diamond 200.5 142.0 133.1b

CH4 200.5 194.4 191.0b

CF4 199.1 38.0 34.2b

C6H6 199.0 41.4 36.1b

O atom 1s

BeO 271.1 243.3 229.9c

BaO 271.1 −455.6 −444.2c

SrO 270.7 −200.4 −205.2c

MgO 271.1 204.5 198.0c

SrTiO3 271.1 −272.9 −301.3c

F atom 1s

LiF 306.4 383.0 369.3d

NaF 306.5 406.3 395.8d

MgF2 306.4 374.7 362.7d

KF 305.4 283.3 268.1d

CaF2 305.8 233.9 220.0d

RbF 306.3 236.6 221.3d

SrF2 305.8 229.3 215.3d

CsF 306.4 142.6 136.3d

BaF2 306.6 142.5 151.9d

Si atom 1s2s2p

SiH4 835.3 426.6 428.0b

SiF4 835.5 411.3 410.0b

aReference 6.
bReference 8.
cReference 23.
dReference 22.

the GIPAW approach. Table II and Fig. 6 summarize the
comparison. The chemical shifts of H, C, and Si are compared
with Ref. 8 and, consequently, the local density approximation
(LDA) was used. The molecules were treated using a big
supercell with a volume of 6000 Bohr3. The calculations for
fluorides and oxides were performed with the PBE exchange-
correlation41 functional. The structural parameters and GIPAW
results for fluorides have been taken from Ref. 22. In the
case of oxides, we follow Ref. 23 and optimize the structural
parameters. The NMR shifts converge relatively fast with
the number of augmented plane waves, see for instance the
insets in Fig. 4. For all solids investigated in this work,
RminKmax equal 8 was used to determine the size of the
augmented-plane-wave basis set. For molecules, however, with
the small atomic spheres for the H atom, RminKmax equal to
3.5 is sufficient. In these cases, the atomic sphere radii of Si
and C are at least two times larger than for the hydrogen atom,
therefore the effective RKmax for these atoms is of course
much larger. The basis set for all systems has been constructed
using many NMR LOs with up to 20 more nodes than the
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FIG. 6. (Color online) Comparison of the isotropic shielding
calculated using our LAPW implementation and GIPAW from
Refs. 6,8,22 and 23.

number of nodes of the corresponding valence wave function.
This leads to results converged within 0.1 ppm. In order to test
the sensitivity of the results with respect to the atomic sphere
radii, we changed them by up to 20%, but the results changed
only within a fraction of ppm. The k space integration has
been done using uniform and shifted k meshes with a distance
between k points close to 0.015 Bohr−1. For molecules, we
use only the � point.

We compare the absolute NMR shifts calculated with
the LAPW and the GIPAW method in Table II. Clearly, the
agreement depends on the specific element. For hydrogen, the
discrepancy is less than 1 ppm, for Si, it stays within 2 ppm,
for carbon, it increases to 5 ppm, except for diamond, where
it is nearly 9 ppm. For oxides and fluorides, the differences
between LAPW and GIPAW can be as big as 20 ppm, but
since the chemical shifts vary in a range of ±400 ppm, even in
those cases the overall trends are quite well represented by both
methods as shown in Fig. 6. The core states are evaluated using
the SCF converged potential, therefore the core contribution
to the total NMR chemical shift of a particular nucleus is not
constant. However, for present examples, it varies less than
2 ppm.

IV. CONCLUSIONS

We have presented a method for the calculation of NMR
chemical shifts within the all-electron APW method. Our
implementation is based on density functional perturbation
theory. We follow the GIPAW method,8 except where obvious
differences result from the different bases sets in these meth-
ods. In particular, we had to resolve two main issues, namely,
the integration of the current according to Biot-Savart’s law,
which cannot be performed in reciprocal space only (as in
GIPAW), but due to the all-electron character of our induced
current, we had to develop an integration procedure based on
Weinert’s pseudocharge method. The second issue is related
to the missing flexibility of the standard LAPW basis set
for representing the first-order perturbation of the occupied
orbitals. The LAPW basis set is very accurate for states with
eigenvalues close to the linearization energies, which covers
usually the valence and the lowest conduction bands. In order
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to provide sufficient flexibility to represent the perturbed wave
functions, we had to add extra basis functions in the form of
local orbitals. The linearization energies of those NMR LOs
are set such that the radial functions have a node at the sphere
boundary and the number of nodes inside the sphere increases
for subsequent LOs.

The perturbative approach is checked to reproduce the
diamagnetic response of isolated spherical atoms, which can be
computed accurately by a much simpler approach. To further
benchmark our implementation, we compared our results
with the GIPAW results from literature for several solids and
molecules. Overall the NMR chemical shifts agree quite well
with the literature values, although in a few cases, differences
as large as 20 ppm are present.
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APPENDIX A: DERIVATIVES OF THE SPHERICAL
HARMONICS

In the LAPW method, the wave functions inside the
atomic spheres are represented as products of radial wave
functions times spherical harmonics [Wlm(r)Ylm(r̂)]. Due to
the presence of the momentum operator, we have to calculate
derivatives of these products in the Cartesian reference frame.
The derivatives are expressed using operators in the spherical
frame of reference:

∂

∂x
= 1√

2
(∇−1 − ∇+1),

∂

∂y
= i√

2
(∇−1 + ∇+1), (A1)

∂

∂z
= ∇0.

The derivatives ∇−1, ∇0 and ∇1 of Wlm(r)Ylm(r̂) are expressed
as follows:

∇0[W (r)Ylm(r̂)] = F 0
+(lm)W+(r)Yl+1,m

+F 0
−(lm)W−(r)Yl−1,m,

∇±1[W (r)Ylm(r̂)] = F±1
+ (lm)W+(r)Yl+1,m±1

+F±1
− (lm)W−(r)Yl−1,m±1,

where W1(r) and W2(r) are

W+(r) = ∂

∂r
W (r) − l

r
W (r), (A2)

W−(r) = ∂

∂r
W (r) + l + 1

r
W (r), (A3)

and F
0,±
± (lm) are expressed as

F 0
+(lm) =

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
, (A4)

F 0
−(lm) =

√
(l + m)(l − m)

(2l − 1)(2l + 1)
, (A5)

F±1
+ (lm) =

√
(l ± m + 1)(l ± m + 2)

2(2l + 1)(2l + 3)
, (A6)

F±1
− (lm) = −

√
(l ∓ m − 1)(l ∓ m)

2(2l − 1)(2l + 1)
. (A7)

APPENDIX B: CURRENT DENSITY INSIDE THE SPHERES

If we write the current density inside the spheres as

jind(r) = Re

[∑
LM

jαLM (r)YLM

]
, (B1)

the jαlm(r) components are then evaluated using following limit:

jαLM (r) = lim
q→0

1

2q
[SLM (r,q) − SLM (r, − q)], (B2)

where the SLM (r,q) are given by

SLM (r,q) = 1

cNk

∑
α=x,y,z

∑
k,o

{[
Ao

k,qα
(r)

]
LM

+ [
Bo

k,qα
(r)

]
LM

}
,

(B3)

The Cartesian coordinates of the vector [Ao
k,qα

(r)]LM can be
evaluated using the following formulas:

[
Ao

x,k,q(r)
]
LM

=
√

π

3
e−iq·ra

{[
Ao

−1,k,q(r)
]+
LM

+ [
Ao

−1,k,q(r)
]−
LM

− [
Ao

+1,k,q(r)
]+
LM

− [
Ao

+1,k,q(r)
]−
LM

}
, (B4)

[
Ao

y,k,q(r)
]
LM

= i

√
π

3
e−iq·ra

{[
Ao

−1,k,q(r)
]+
LM

+ [
Ao

−1,k,q(r)
]−
LM

+ [
Ao

+1,k,q(r)
]+
LM

+ [
Ao

+1,k,q(r)
]−
LM

}
, (B5)

[
Ao

z,k,q(r)
]
LM

=
√

2π

3
e−iq·ra

{[
Ao

0,k,q(r)
]+
LM

+ [
Ao

0,k,q(r)
]−
LM

}
, (B6)

where [Ao
±1,k,q(r)]±LM and [Ao

0,k,q(r)]±LM are given by

[
Ao

−1,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′M ′0

l′L′0 Gm−1M ′M
l±1L′L + i(qx − iqy)Gm′M ′1

l′L′1 Gm−1M ′M
l±1L′L

− i(qx + iqy)Gm′M ′0
l′L′1 Gm−1M ′M

l±1L′L − i(
√

2)qzG
m′M ′−1
l′L′1 Gm−1M ′M

l±1L′L
]
F−1

± (lm),
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[
Ao

+1,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′M ′0

l′L′0 Gm+1M ′M
l±1L′L + i(qx − iqy)Gm′M ′1

l′L′1 Gm+1M ′M
l±1L′L

− i(qx + iqy)Gm′M ′0
l′L′1 Gm+1M ′M

l±1L′L − i(
√

2)qzG
m′M ′−1
l′L′1 Gm+1M ′M

l±1L′L
]
F+1

± (lm),[
Ao

0,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′M ′0

l′L′0 GmM ′M
l±1L′L + i(qx − iqy)Gm′M ′1

l′L′1 GmM ′M
l±1L′L

− i(qx + iqy)Gm′M ′0
l′L′1 GmM ′M

l±1L′L − i(
√

2)qzG
m′M ′−1
l′L′1 GmM ′M

l±1L′L
]
F 0

±(lm),

where R
o,±
lm,l′m′(r) = rW

o,k
±,lm(r)W (1),o,k+q

l′,m′ (r) and F 0
±(lm) are defined in the Appendix A. W

o,k
±,lm(r) and W

(1),o,k+q
l′,m′ (r) are the radial

functions entering the spherical harmonic expansion of the wave function [see Eq. (25)] of occupied states and their first-order
perturbation. Similarly, the expressions for the components of the [Bo

k,qα
(r)]LM vector are

[
Bo

x,k,q(r)
]
LM

=
√

π

3
e−iq·ra

{[
Bo

−1,k,q(r)
]+
LM

+ [
Bo

−1,k,q(r)
]−
LM

− [
Bo

+1,k,q(r)
]+
LM

− [
Bo

+1,k,q(r)
]−
LM

}
, (B7)

[
Bo

y,k,q(r)
]
LM

= i

√
π

3
e−iq·ra

{[
Bo

−1,k,q(r)
]+
LM

+ [
Bo

−1,k,q(r)
]−
LM

+ [
Bo

+1,k,q(r)
]+
LM

+ [
Bo

+1,k,q(r)
]−
LM

}
, (B8)

[
Bo

z,k,q(r)
]
LM

=
√

2π

3
e−iq·ra

{[
Bo

0,k,q(r)
]+
LM

+ [
Bo

0,k,q(r)
]−
LM

}
, (B9)

with [Bo
±1,k,q(r)]±LM and [Bo

0,k,q(r)]±LM given by

[
Bo

−1,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′−1M ′0

l′±1L′0 GmM ′M
lL′L + i(qx − iqy)Gm′−1M ′1

l′±1L′1 GmM ′M
lL′M

− i(qx + iqy)Gm′−1M ′0
l′±1L′1 GmM ′M

lL′L − i(
√

2)qzG
m′−1M ′−1
l′±1L′1 GmM ′M

lL′L
]
F−1

± (lm),[
Bo

+1,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′+1M ′0

l′±1L′0 GmM ′M
lL′L + i(qx − iqy)Gm′+1M ′1

l′±1L′1 GmM ′M
lL′L

− i(qx + iqy)Gm′+1M ′0
l′±1L′1 GmM ′M

lL′L − i(
√

2)qzG
m′+1M ′−1
l′±1L′1 GmM ′M

lL′L
]
F+1

± (lm),[
Bo

0,k,q(r)
]±
LM

=
∑
lm

∑
l′m′

∑
L′M ′

R
o,±
lm,l′m′(r)

[√
6Gm′M ′0

l′±1L′0G
mM ′M
lL′L + i(qx − iqy)Gm′M ′1

l′±1L′1G
mM ′M
lL′L

− i(qx + iqy)Gm′M ′0
l′±1L′1G

mM ′M
lL′L − i

√
2qzG

m′M ′−1
l′±1L′1 GmM ′M

lL′M
]
F 0

±(lm).

The evaluation of the first-order perturbation |�(1)
o,k+qα

〉 requires the matrix elements Co
k,qα

[see Eq. (36)]. The expressions for
the sphere part of the integrals are similar to the formulas for the Bo

k,qα
(r′) vectors. However, in this case, the momentum operator

acts on the wave functions of the occupied states |�o,k〉, the modulating function is eiqr′
and the expression is integrated over r′.

The integrals Co
k,qα

are evaluated using the following formulas:

Co
k,q = (B × α) · [

Co
x,k,q,C

o
y,k,q,C

o
z,k,q

]
, (B10)

Co
x,k,q = eiq·ra

√
2π

[(
Co

−1,k,q

)+ + (
Co

−1,k,q

)− − (
Co

+1,k,q

)+ − (
Co

+1,k,q

)−]
, (B11)

Co
y,k,q = eiq·ra i

√
2π

[(
Co

−1,k,q

)+ + (
Co

−1,k,q

)− + (
Co

+1,k,q

)+ + (
Co

+1,k,q

)−]
, (B12)

Co
z,k,q = eiq·ra

√
4π

[(
Co

0,k,q

)+ + (
Co

0,k,q

)−]
, (B13)

with [Co
±1,k,q(r)]±LM and [Co

0,k,q(r)]±LM given by

(
Co

−1,k,q

)± =
∑
lm

∑
l′m′

∑
L′M ′

√
2π

3
I

o,±
lm,l′m′

[√
6Gm′−1M ′0

l′±1L′0 + i(−qx + iqy)Gm′−1M ′1
l′±1L′1

+ i(qx + iqy)Gm′−1M ′0
l′±1L′1 + i(

√
2)qzG

m′−1M ′−1
l′±1L′1

]
GmM ′0

lL′0 F−1
± (lm),

(
Co

+1,k,q

)± =
∑
lm

∑
l′m′

∑
L′M ′

√
2π

3
I

o,±
lm,l′m′

[√
6Gm′+1M ′0

l′±1L′0 + i(−qx + iqy)Gm′+1M ′1
l′±1L′1

+ i(qx + iqy)Gm′+1M ′0
l′±1L′1 + i(

√
2)qzG

m′+1M ′−1
l′±1L′1

]
GmM ′0

lL′0 F+1
± (lm),

035132-11
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(
Co

z,k,q

)± =
∑
lm

∑
l′m′

∑
L′M ′

√
2π

3
I

o,±
lm,l′m′

[√
6Gm′M ′0

l′±1L′0 + i(−qx + iqy)Gm′M ′1
l′±1L′1

+ i(qx + iqy)Gm′M ′0
l′±1L′1 + i

√
2qzG

m′M ′−1
l′±1L′1

]
GmM ′0

lL′0 F 0
±(lm),

where I
o,±
lm,l′m′ = ∫ RMT

0 dr rW
o,k
±,l′,m′ (r)Wα,k+q

lm (r) and α stands for either occupied or empty states depending on the method used

for computing |�(1)
o,k+qα

〉. Similarly to Ao and Bo, the interstitial part of the integral is easily calculated using Eq. (36) and
including a Fourier transform of the step function.
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Nordström, Phys. Rev. B 64, 195134 (2001).

39M. Weinert, J. Math. Phys. 22, 11 (1981).
40C. Friedrich, M. C. Müller, and S. Blügel, Phys. Rev. B 83, 081101
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