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Standard density functionals without van der Waals interactions yield an unsatisfactory description
of ice phases, specifically, high density phases occurring under pressure are too unstable compared
to the common low density phase I, observed at ambient conditions. Although the description is
improved by using functionals that include van der Waals interactions, the errors in relative vol-
umes remain sizable. Here we assess the random phase approximation (RPA) for the correlation
energy and compare our results to experimental data as well as diffusion Monte Carlo data for ice.
The RPA vyields a very balanced description for all considered phases, approaching the accuracy
of diffusion Monte Carlo in relative energies and volumes. This opens a route towards a concise
description of molecular water phases on surfaces and in cavities. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4865748]

. INTRODUCTION

For the last 50 years, water and ice have always been
at the forefront of research. With the emergence and estab-
lishment of density functional theory (DFT), there has been
a slow but continuous shift from empirical force field based
methods towards an ab initio description of ice'™ and lig-
uid water.'%3! However, despite at least three decades of re-
search, an entirely satisfactory parameter free description of
energy differences between different water clusters and ice
phases has long been unattainable. This changed only re-
cently, with growing compute power making it possible to
treat water clusters and solid state phases using ab initio
quantum chemical methods*?>~*® and accurate diffusion Monte
Carlo (DMC) calculations,’ respectively. These calculations
certainly constitute a reference for future work and are impor-
tant benchmarks for more approximate methods.

What makes the description of ice such a challenge is that
the bonding between the water molecules is determined by
fairly long range static as well as dynamic (i.e., van der Waals)
dipole-dipole interactions and the Pauli exclusion principle
between the closed shells at short distances. Van der Waals
(vdW) interactions and Pauli repulsion are difficult to han-
dle without explicitly resorting to many electron techniques,
such as quantum chemical methods or diffusion Monte Carlo.
These methods, in particular the stochastic approaches, are
exceedingly demanding when small energy differences be-
tween competing phases need to be evaluated with meV accu-
racy. The quantum chemical methods, on the other hand, are
yet restricted to small clusters, requiring fairly complicated
incremental approaches for the treatment of three dimensional
solids or liquid phases.»*’ Therefore currently DFT meth-
ods that are computationally cheap, though more approxi-
mate, are widely used. Examples for this are the vdW-DFT of
Lundqvist and co-workers**" that employs a non-local den-
sity functional and DFT-D using simple pair wise vdW cor-
rections between the constituent H and O atoms.’'=* These
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approaches are reasonably accurate, and the verdict which one
should be preferred over the other is to some extent still de-
bated.

Both vdW-DFT and DFT-D approaches, however, also
share the common feature that the exchange interaction,
which is an important part of the Pauli exclusion principle,
is modeled using DFT. This seems to be problematic, in par-
ticular at high densities, where the water molecules approach
each other and the molecular charge densities start to over-
lap. Indeed, both vdW-DFT and DFT-D are not entirely sat-
isfactory in capturing the density difference between ambi-
ent and high pressure phases.” Also it is not quite obvious
whether these two approaches are directly applicable to wa-
ter on surfaces, a research area receiving currently significant
and growing attention;>*>’ vdW-DFT is fundamentally based
on the interaction within jellium, and might work well for ice
on metallic surfaces, whereas the addition of pair-wise atom
centered vdW potentials is most likely more suitable for water
on covalent and possibly ionic substrates.

The random phase approximation (RPA) to the correla-
tion energy avoids these caveats, as it combines the exact
exchange with an approximate but reasonably accurate treat-
ment of the correlation. The exact exchange energy is consid-
ered to be superior to semi-local exchange functionals at short
distances. The correlation part is calculated from the DFT
based independent particle response function; for molecules,
this yields fairly reliable dispersion forces at large distances
with Cg coefficients in good agreement with experiment.38-°
Current DFT functionals also describe the response of insula-
tors and metals reasonably well, and therefore, metals, semi-
conductors, and insulators are handled with about similar ac-
curacy by this approximation.5'~%* This suggests that the RPA
should describe the interaction of water with any substrate
reasonably well. What remains to be demonstrated is whether
the RPA is accurate for the description of the intermolecular
interactions between water molecules. This is exactly the pur-
pose of the present work. Here we apply the Vienna Ab-Initio

© 2014 AIP Publishing LLC
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Simulation Package (VASP) to many phases of water ice and
compare our findings with well-established experimental data
and previously calculated DMC data. In general, we find that
the RPA results compare very well with the reference data,
although the treatment of the repulsive part, the exchange in-
teraction, remains to some extent dependent on the type of
orbitals used in the calculations: with DFT orbitals, the ex-
change interaction is too repulsive yielding too small binding
energies and somewhat too large equilibrium lattice constants,
whereas with Hartree-Fock orbitals we find opposite trends,
too large binding energies and too small lattice constants.

Il. METHODS
A. Computational methods

In the present work, all calculations were performed us-
ing VASP. The projector augmented wave method of Blochl in
the implementation of Kresse and Joubert was used.®>% The
employed potentials were constructed to conserve the scat-
tering properties of the atoms well up to about 20 Ry above
the vacuum level. This was achieved by using additional pro-
jectors above the vacuum level. Core radii of 0.95 a.u. for
H and 1.5 a.u. for O were applied. The scattering properties
are, however, correctly described even at much smaller radii
of about 1.1 a.u. for O and 0.5 a.u. for H. Partial waves for
s, p, and d orbitals were included for both O and H. Specif-
ically, the O_GW_new and H_GW potentials as released with
vasp.5.3 were used.

All plane waves with the kinetic energy lower than
800 eV were used in the DFT calculations. Such a larger
cutoff guarantees convergence to a few meV in absolute en-
ergies, and similar results could be obtained at much lower
energy cutoffs. However, since DFT calculations are compu-
tationally much less expensive than RPA calculations, and in
order to avoid tedious convergence tests, we have chosen this
rather generous plane wave cutoff. All DFT calculations, ex-
cept when otherwise noted, are performed using the Perdew,
Burke, and Ernzerhof functional.®’

Our calculations beyond DFT use two slightly different
approximations. The first one is the usual exact exchange
(EXX) plus random phase approximation (RPA). In this
case, we first perform a standard PBE calculation, and
then evaluate the EXX energy using PBE orbitals and
add the correlation energy calculated in the random phase
approximation with PBE orbitals and PBE one-electron
energies (EXX+RPA@PBE). It has been noted by Ren and
co-workers® that this approximation often underestimates
the intermolecular binding energies between small molecules,
since the occupied PBE orbitals are spatially too delocalized.
This results in a too strong Pauli repulsion at the equilibrium
distance and, resultantly, too large intermolecular bond
lengths. To resolve this issue, various approximations have
been suggested among them replacing the exact exchange
evaluated employing PBE orbitals by the Hartree-Fock
exchange,?® or a restricted summation of the singles contri-
butions in diagrammatic perturbation theory (rSE).5%%-70 We
believe that none of these solutions is entirely satisfactory, as
all of them assume in essence that the one-particle reduced
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density matrix y(r, r') from Hartree-Fock is more accurate
than the reduced density matrix from the approximate density
functional. This might be true for some specific cases, such
as small molecules, large band gap insulators, or regions far
from any atomic core; however, it can hardly be true for met-
als or small gap insulators, where present density functionals
are far more accurate than the Hartree-Fock approximation. It
is, however, clear that the Hartree-Fock orbitals are spatially
more contracted than the PBE orbitals, and evaluation of the
exact exchange energy with those orbitals hence reduces the
intermolecular Pauli repulsion. Consequently, the intermolec-
ular distances become smaller, and past experience suggests
that this often improves agreement with experiment.® To
obtain a—what we believe—lower bound for the lattice con-
stants, we have therefore also evaluated the exact exchange
energy using Hartree-Fock orbitals. Even in this case, the
correlation energy is calculated with PBE orbitals and PBE
one electron energies. In this work, we refer to this scheme
as HF+RPA @PBE.

The EXX+RPA@PBE and the HF+RPA@PBE calcu-
lations are performed at a more modest computational setup
than the PBE calculations discussed above. The plane wave
energy cutoff for the orbitals was set to ELY = 450 eV. When
summations over unoccupied Kohn-Sham states are required
(virtual orbitals), all orbitals spanned by the basis set are de-
termined by exact diagonalization of the Kohn-Sham Hamil-
tonian. The correlation energy in the random phase approxi-
mation is then calculated in the usual manner as

ERPA — /oo do Tr{ln[1 — x*SGow] + x*SGwp}, 1)
0o 2w

where x XS is the independent particle response function eval-
uated using PBE orbitals and one electron energies, and v is
the Coulomb kernel. The response function itself is also ex-
panded in a plane wave basis set. The plane wave cutoff for
this basis set is set to 210-300 eV (smaller than the basis set
for the orbitals), and the correlation energy is extrapolated to
the infinite basis set limit, assuming that the basis set error
falls off like the inverse of the number of plane waves included
in the basis set for the response function.’® In the VASP code,
this requires a single calculation and the extrapolation is per-
formed automatically by the code, requiring a minimum of
extra compute time. The structures used for the RPA calcu-
lations were determined by completely relaxing all internal
parameters of the structures (including the cell shape) at a set
of volumes employing the PBE functional (and the previously
mentioned cutoff of 800 eV). In the subsequent RPA calcula-
tions, the PBE structures were kept fixed since forces and the
stress-tensor are presently not available within the RPA. Sim-
ilar strategies are also routinely adopted in DMC simulations
and most coupled cluster quantum chemistry calculations.
For ice, the RPA energy volume curves usually span a
very small energy range of the order of 10 meV per molecule,
when the volume varies by 10%. These small energy changes
make converged calculations particularly challenging. For in-
stance, when the volume changes, the number of plane waves
G at a q point in the Brillouin zone changes disruptively with
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TABLE I. Summary of ice phases considered in the present work. The experimental Bravais lattice (expt.), as well as the considered approximation to the
experimental structure (calc.) are specified. The total number of molecules is given in the column “mol.” The column “k-points” indicates the number of
divisions (n) in each reciprocal lattice direction used to generate a uniform k-point grid (e.g., n X n x n).

Phase Space group Expt. Calc. Mol. k-points

Iy P63/mmc (#194) Hexagonal Simple monoclinic 12 3

XI Cmc2, Cmc2; (#36) Orthorhombic Base c. orthorhombic 4 6

XI Pna2; Pna2; (#33) Orthorhombic Simple orthorhombic 8 3

I.(a) 141 md (#109) Tetragonal Body c. tetragonal 2 7

1.(b) Pna2; (#33) Orthorhombic Simple orthorhombic 4 5

I.(c) P4, (#76) Tetragonal Simple tetragonal 8 4

I.(d) P4,2,2 (#92) Tetragonal Simple tetragonal 4 4

X P4,2,2 (#92) Tetragonal Simple tetragonal 12 3

11 R3 (#148) Rhombohedral Trigonal (thombohedral) 12 3

XIII P2/a (#14) Monoclinic Simple monoclinic 28 1

XV P1 (#1) Triclinic Triclinic 10 3

VIII 141/amd (#141) Tetragonal Body c. tetragonal 4 6

volume: formation of so-called proton disordered phases, i.e., possi-
#2|G + q|? ble configurations of proton position§ copsistent with the ice
o < Eoyt. rules. The phases of ice under scrutiny in the present work

e

This problem is more severe for high symmetry structures
than for low symmetry structures, since reciprocal lattice
shells show more degeneracies in high symmetry structures.
The smoothness can be improved by either increasing the cut-
offs (which we found unpractical for the present calculations)
or increasing the number of sampling points q in the Bril-
louin zone. In this work, we have followed the second ap-
proach, i.e., increasing the number of q points until a smooth
energy-volume curve was obtained. For some phases, a siz-
able residual noise, however, remains, and the bulk moduli
might exhibit error bars of about 10%—20% (estimated from
different q point sets).

To obtain the ice binding energies with respect to the free
water molecule, accurate reference values for the exchange
and correlation energy of the water molecule are required. The
exchange energies, EXX and HF, were determined by calcu-
lating the energy of a single H,O molecule in a box with the
box size systematically varied between 7 and 21 A. The cor-
relation energy was determined in a smaller 7 A box using
3 x 3 x 3 k-points. Although absolute energies are not di-
rectly transferable between different codes or potentials we
also report the final molecular results obtained by VASP. The
final RPA correlation energy of a single water molecule is
—12.426 eV, the EXX energy using PBE orbitals and the HF
energy are —29.254 eV and —29.479 eV, respectively. As a
matter of fact, the (self-consistently evaluated) HF energy is
significantly lower than the EXX energy.

B. Considered phases

From the known crystalline phases of ice, we have con-
sidered the ones listed in Table I and depicted in Figures 1
and 2. All structures follow the usual building rules for
ice: each water molecule has four nearest neighbor water
molecules, donates two hydrogen bonds, and accepts two hy-
drogen bonds. The hydrogen atoms (protons) are typically
not fixed in their high-symmetry positions. This results in the

can be arranged into two groups depending on their densities:
(i) Low-density phases (see Fig. 1): proton disordered hexag-
onal ice (I), the most stable proton ordered form of I;, (XI
Cmc2)), the second most stable proton ordered phase of I
(XTI Pna2;), and four proton ordered cubic phases, I.(a)-I.(d);
and (ii) High-density phases: the proton ordered form of ice
III (ice IX), the proton ordered ice II, the proton ordered form
of ice V (ice XIII), the proton ordered form of ice VI (ice
XV), and the proton ordered form of ice VII (ice VIII). In the
following, we will briefly summarize the structural details of
each phase.

Hexagonal ice (I) is the common phase of ice naturally
encountered. The protons are usually disordered, although
partial order can be induced by careful, slow annealing in the
presence of some ionic “catalyst” such as KOH,”"7?> which
increases the usually slow reorientation rate in ice. To model
the disorder, we have adopted the scheme used by Hamann.”®
This lowers the symmetry to monoclinic with a structural
model containing 12 molecules. All our energies are refer-
enced to this structure in the final figures. This needs to be
considered when comparison is made with other calculations.
However, a recent study of Santra et al. suggests that the en-
ergy difference to a larger 96 molecule cell is only in the
range of 1 meV.”* To study proton ordered variants of hexag-
onal ice, we have included one hexagonal structure with fer-
roelectric and one with anti-ferroelectric order, respectively.
The ferroelectrically ordered phase is realized in ice XI with
space group Cmc2;. The structure was first resolved exper-
imentally by Leadbetter ef al.’”! showing “polar” order on a
length scale of about 40 A. An anti-ferroelectrically ordered
phase can be realized in the space group Pna2; and was sug-
gested by Davidson et al.’”®> Further prototypically ordered
structures have been studied systematically in Refs. 76 and
77 using density functional theory and a plane wave code.

Cubic ice (I.) is experimentally difficult to prepare and
forms only under certain conditions, for instance, it is believed
to form in the Earth’s upper troposphere at temperatures of
less than 220 K.”8 Above 240 K, cubic ice tends to transform
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FIG. 1. Low density structures of ice considered in the present work. Large
red and small white spheres indicate the oxygen and hydrogen atoms, re-
spectively. Dashed (green) lines indicate hydrogen bonds. Full thick lines
demarcate the unit cell.

to hexagonal ice. As for hexagonal ice, cubic ice is usually
proton disordered. Here we considered four different proton
ordered phases out of the 11 different proton configurations
enumerated in Ref. 79. The first phase is fully ferroelectri-
cally ordered and denoted as I.(a), whereas the other three
are ferrielectrically ((b)—(c)) and anti-ferroelectrically (d) or-
dered; the number of anti-ferroelectrically ordered neighbors
increases as one goes from structure (b) to structure (d). De-
tails of the structures are discussed elsewhere.’

Ice IX is stable at temperatures below 140 K and pres-
sures between 300 and 400 MPa. Experimentally, it is formed
by slow cooling of tetragonal crystalline ice III (formed by
cooling water down to 250 K at 300 MPa).! Both disor-
dered ice III and ordered ice IX have the space group P4,2,2
(#92). At similar pressures (300 MPa) and low temperature
(198 K), ice II (the rhombohedral crystalline form of ice)

J. Chem. Phys. 140, 084502 (2014)

FIG. 2. High density structures of ice considered in the present work. Color
coding is the same as in Figure 1.

can be formed from ice 1,,.5? Ice Il is a proton ordered phase
with space group R3 (#148), with no direct proton disordered
counterpart.®? The structure is characterized by two hexago-
nal rings, connected by hydrogen bonds.

The monoclinic proton-ordered ice XIII was success-
fully prepared and structurally determined by neutron powder
diffraction in 2006.3* After doping with HCI, it can be formed
from the corresponding proton-disordered monoclinic phase
of ice (ice V) at temperatures slightly below 130 K and apply-
ing a pressure of 0.5 GPa. In the pressure range from 0.8 GPa
to 1.5 GPa and at similar low temperatures, the proton-ordered
counterpart to the proton-disordered phase VI has been iden-
tified in 20093 and named ice XV (triclinic).

The final highest pressure phase considered here is ice
VIII. It is the proton ordered form of the proton disordered
ice VII with tetragonal space group I4;/amd (#141). The oxy-
gen sublayer is the same for both structures and all molecules
have an equivalent environment. The structure consists of
two inter-penetrating, but not interconnected cubic ice I.
sublattices.® The sublattices have opposite dipole moments
resulting in an anti-ferroelectric ordering.%’

lll. RESULTS

In the first subsection, we present results for few selected
phases, elaborating on illustrative tests and important issues.
In the subsequent subsections, binding energies and equilib-
rium volumes are discussed.
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FIG. 3. Binding energy per water molecule versus volume for ice I
(P63/mmc) for PBE, EXX+RPA@PBE, and HF+RPA@PBE. The experi-
mental volume is shown as a vertical line. The dotted lines indicate the theo-
retical volume and energy.

A. Preliminary remarks
1. Optimized volume

To illustrate the general behavior and, specifically, the
rather slow k-point convergence, we show in Figs. 3 and 4 the
energy as a function of the cell volume per water molecule
for different k-point meshes. The data computed within PBE,
EXX+RPA@PBE, and HF+RPA @PBE are shown for ice I,
(low density case) in Fig. 3 and for ice VIII (high density case)
in Fig. 4.

The first thing to notice is that, for ice I, at the PBE level,
the equilibrium volume is much too small compared to exper-
iment. Explicitly including many-body correlation effects in
diagrammatic perturbation theory clearly improves upon this
point, with the equilibrium volumes now approaching the ex-
perimental values. For the high density ice VIII phase, the dif-
ferent available experimental values for the volume (18.61 A3,
and 20.09 A%)®8:3% hamper a definite assessment of the var-
ious theoretical methods. In this case, PBE certainly yields
much too large volumes. This can be attributed to the lack
of vdW interactions that become more important at small
volumes, where the number of neighbors increases.” Also
in this case, the RPA delivers an improved description com-
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FIG. 4. Binding energy per water molecule versus volume for ice VIII for
PBE, EXX+RPA@PBE, and HF+-RPA@PBE. The experimental volume is
shown as a vertical line.

pared to PBE. The EXX+RPA optimized volume is brack-
eted by the experimental values, whereas the HF+RPA es-
timate is much closer to the lower experimental value. Fol-
lowing the expectations already outlined in the Introduction,
the HF+RPA @PBE equilibrium volumes are smaller than the
EXX+RPA@PBE volumes. In fact, both, HF+RPA @PBE
and EXX+RPA @PBE roughly bracket the experimental vol-
ume, something we will also observe for other ice phases.

2. Convergence with k-points

As for the k-point convergence, we find that the DFT re-
sults converge rapidly with k-points, and show only very little
jaggedness, whereas the RPA results exhibit quite some resid-
ual noise for a coarse 2 x 2 x 2 k-point grid, especially for the
high density phase (ice VIII). The jaggedness is mostly gone
in the low density I, phase with 3 x 3 x 3 points, whereas in
ice VIII reasonable smoothness is only achieved from 4 x 4
X 4 k-points on. For the converged k-point grids, the data can
be well fitted with a 3rd order Birch-Murnaghan equation of
state.

The final k-point grids for each phase are summarized
in Table I. As already mentioned, in some cases a residual
jaggedness prevails, since we were unable to increase the
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k-point grids significantly beyond the values in the tables with
the present code. In any considered case, however, the mini-
mum was clearly resolved in the energy volume curve.

3. Structure of ice IX

Ice IX has a tetragonal structure, and initially we per-
formed a structural optimization for all internal parameters
(including the c/a ratio) at each volume using the PBE func-
tional. This lead to results in disagreement with the previous
calculations.” However, the previously reported calculations
were performed with the cell shape fixed to the experimen-
tally determined structure. Relaxation of the lattice shape
changes the results only little for all, but the ice IX structure.
In fact, PBE yields only a mediocre description of the c/a ratio
for ice IX, with the value approaching 1.123 whereas the ex-
perimental values are close to 1.01.%%°! In this case, vdW in-
teractions are particularly important along the ¢ direction, and
only inclusion of them improves the c/a ratio. For instance,
DFT-D yields a c/a ratio around 1.03. To maintain compati-
bility with the rest of the results, we decided to stick to the op-
timization of the structures using the PBE functional, but kept
the c/a ratio of ice IX fixed to the experimental value. Both
results, the one with the full optimization of the c/a ratio and
the one with the c/a ratio fixed to the experimental values are
shown in the tables, whereas the figures report on the results
for fixed c/a ratio. As Table II shows, the RPA yields a lower
energy with the c/a ratio fixed to the experimental value.

B. Binding energies

The binding energies of all considered phases are sum-
marized in Table II and Fig. 5. In the figure, the energies
are shown with respect to ice ;. Let us first concentrate on
the phases at ambient pressure, hexagonal ice and cubic ice
(lower panel in Fig. 5). From the figure, it is clear that there is
very little difference between the standard density functional
theory calculations (PBE) and the two RPA variants for rel-
ative energies. Note that, mostly because of the insufficient

TABLE II. Binding energies in eV per water molecule as obtained for dif-
ferent phases of ice with PBE, EXX+RPA @PBE, and HF+RPA@PBE. The
energies were evaluated at the equilibrium volumes corresponding to a given
method and phase.

Phase PBE EXX+RPAFXX HF+RPAHF
I —0.6649 —0.5445 —0.6796
XI Cme2, —0.6678 —0.5476 —0.6831
XI Pna2, —0.6637 —0.5443 —0.6779
I.(a) —0.6682 —0.5478 —0.6824
Ie(b) —0.6654 —0.5448 —0.6793
I.(c) —0.6641 —0.5417 —0.6769
I.(d) —0.6627 —0.5425 —0.6773
IX —0.6199 —0.5290 —0.6652
IX c/a expt. —0.6126 —0.5362 —0.6735
I -0.5918 —0.5358 —0.6712
XV —0.5474 -0.5223 —0.6620
VI —0.4759 —0.5111 —0.6593
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FIG. 5. Binding energies per water molecule relative to ice I,. AEp is
the energy with respect to proton disordered I, for the same method: AEj
= Ep(phase) — Ep(I;). Other theoretical data marked with (a) are from
Ref. 74 [PBE, PBEO-vdW(TS), DMC]. Experimental data (b) are from
Ref. 92.

sampling of the Brillouin zone, the errors in the RPA ener-
gies are about 1 meV for relative energies. Clearly the pro-
ton disordered hexagonal phase is about 3 meV higher in en-
ergy than the ferroelectrically ordered phase XI Cmc2;. We
note that this is in agreement with the experimental data that
also predict a long range ferroelectrically ordered phase as
the actual low temperature ground state structure of hexag-
onal ice.”! The anti-ferroelectric phase considered here (XI
Pna2)) is slightly higher in energy than the disordered phase
of Hamann, but the energy difference is as small as 2 meV
in PBE and HF+RPA@PBE, and vanishing within the er-
ror bars for EXX+RPA@PBE. One would expect that the
cubic phase also prefers a ferroelectric order. Indeed, this is
confirmed, with the I.(a) being practically isoenergetic with
the hexagonal ferroelectric phase. Along the sequence I.(a)
— 1.(d), the number of anti-ferroelectrically ordered neigh-
bors increases. The energy increase is about equal for PBE
and the two RPA variants, with a somewhat steeper increase
in the RPA until I.(c), and almost isoenergetic results for I.(c)
and I.(d) in the RPA. The important observation is that for the
results at ambient pressure, PBE seems to capture all essen-
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tial trends, and the RPA yields qualitatively and even quan-
titatively the same results. This is most likely related to the
fact that the energy ordering is determined by the long range
dipole-dipole interactions between different water molecules.

It is worthwhile mentioning that simple electrostatic non-
polarizable water models predict that the anti-ferroelectric
phase is more stable than the ferroelectric phase,”® whereas
DFT and more accurate methods predict that the ferroelectric
order is preferred, both for the hexagonal as well as for the
cubic phase. This can be related to the polarizability and ad-
ditionally induced dipoles on the water molecules, which are
neglected in simple rigid electrostatic water models.

The precision of PBE deteriorates quite dramatically, as
one moves to high pressure phases. Pressure induces a sizable
increase in the density and a reduction of the equilibrium vol-
ume. The energy ordering is shown in the top panel of Fig. 5.
Let us start with a comparison between the present PBE calcu-
lations and previously published data. Generally our data re-
produce the previous trends quite well, even though our data
points tend to lie at slightly higher energies than the previ-
ous calculations. For ice VIII, the deviation amounts to about
20 meV. The reason for this discrepancy is that the present
calculations were performed with a fairly large core oxygen
PAW potential to reduce the computational cost for the subse-
quent RPA calculations. In any case, it is clear that compared
to experiment both PBE calculations show a much too steep
increase of the energy as the volumes decrease.

The RPA energy differences with respect to ice I, agree
very well with the previously published DMC data for ice II
and ice VIII. Specifically, ice II becomes stabilized by almost
60 meV compared to PBE, and the stabilization is even more
dramatic for ice VIII where the energy difference decreases
by almost 170 meV. There is a slight difference between the
EXX+RPA@PBE and HF+RPA@PBE as the pressure in-
creases: as already argued before, HF leads to a contraction of
the density and therefore reduces the Pauli repulsion. Hence,
the increase in the energy is smaller with HF+RPA@PBE
than with EXX+RPA @PBE.

In our present calculations ice IX and ice II are almost
iso-energetic lying about 10 meV above the hexagonal dis-
ordered ice phase. We believe that this result is very reason-
able and consistent with the experimental situation that both
phases can be prepared at similar preparation conditions and
pressures from different parent ice phases. The experimental
estimates see ice II at slightly lower energies, but we cannot
confirm this (neither do the simulations using vdW corrected
functionals). In the DMC, the ice II is at lower energies than
the disordered hexagonal phase, which is not confirmed by
our RPA data, either. However, considering the statistical er-
ror bars of the DMC calculations, we believe that this residual
difference is not really meaningful.

For ice XV, our predicted energy differences agree very
well with vdW corrected DFT calculations. However, for ice
VIII, the increase in the energy is too steep using the vdW(TS)
corrections. Here, the RPA does clearly better and yields en-
ergy changes in very good agreement with DMC simulations
and experiment.

With respect to isolated water molecules, the RPA ener-
gies are not on par with the DMC results. From Table II, we
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find for ice I, a binding energy of —545 meV and —680 meV
for EXX+RPA @PBE and HF+RPA @PBE, respectively. The
experimental and DMC values are —610 and —605 £5 meV,
respectively. Clearly the EXX+RPA underbinds by about
65 meV, whereas the HF+RPA overbinds by about the same
amount. The correct value lies almost exactly in between the
two values, suggesting that, in this case, a mean field descrip-
tion with 50 % Hartree-Fock exchange and 50% EXX evalu-
ated using DFT orbitals would yield very good results. This is
a sensible result: in H,O and ice, the screening is very weak,
which implies that hybrid functionals should include more ex-
change than in the typical hybrid functionals such as PBE0%*
and HSE.?>?® The qualitatively “best” orbitals are most likely
obtained by a half-half hybrid functional, with “best” imply-
ing that such a functional yields a one-particle density matrix
very close to the true one-particle density matrix.

C. Equilibrium volumes

The equilibrium volumes are summarized in Table III
and Fig. 6. As expected from the energies, Table III suggests
that EXX+RPA @PBE again underbinds (too large volumes),
whereas HF+RPA @PBE overbinds (too small volumes).
As before, a mean field description with 50 % Hartree-Fock
exchange and 50 % EXX employing DFT orbitals would
yield very good volumes, confirming the final conjecture of
Sec. III B. To delineate this constant volume error, we show
in Fig. 6 the relative change of the volume with respect to
disordered hexagonal ice I,,. The problem of PBE is that the
volume changes too little for the high pressure phase; from
hexagonal or cubic ice to ice VIII only by 10 A3 per water
molecule, whereas the experimental value is closer to 12 A3.
Van der Waals corrections improve upon this value, but only
slightly. In fact, they reduce all volumes by roughly the same
fraction, so that changes in the relative volumes AV, differ

insignificantly between PBE and PBE-D.
The only method that yields almost exact results is DMC,

but at a very steep compute cost. RPA exhibits a very good
performance with little differences in the volume variations
between EXX+RPA@PBE and HF+RPA@PBE. On first
sight, the “compressibility” seems to be somewhat overesti-
mated, with the volume changes being about 1 A3 too large
for ice VIII. However, our data have not been corrected for
zero point energy effects. Accounting for them increases the
volumes and more so for the high pressure phases. The zero
point expansion is about 5 % stronger for ice VIII com-
pared to ice I,,%7* corresponding to roughly 1 A3, Includ-
ing the zero point vibration effects will hence give almost
perfect agreement in the volume changes for ice VIII with
experiment.

IV. SUMMARY AND CONCLUSIONS

The present work indicates that the random phase ap-
proximation yields a satisfactory description of ice for both
the densities as well as the relative energies (compare Fig. 5).
In principle, such a good description is not astonishing,
since the random phase approximation seems to capture
both van der Waals interactions as well as covalent bonding
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TABLE III. Equilibrium volumes in A3/molecule of the considered phases for PBE, EXX+RPA@PBE, HF+-RPA @PBE, and experiment.

Phase PBE PBEO+vdW EXX+RPA@PBE HF+RPA@PBE DMC Expt.
I 30.23 29.88 32.81 31.31 31.69 32.05%, 3250
XI Cme2; 30.33 3243 31.03 32.15¢,31.924, 31.99¢
XI Pna2; 30.23 32.78 31.38

I.(a) 30.20 3277 31.53 32.105°

I.(b) 30.20 32.67 31.20

L.(c) 30.21 32.64 30.87

I.(d) 30.23 32.57 31.30

IX 26.75 27.32 25.60 25.80f, 25.638
IX c/a expt. 25.66 23.85 26.61 24.98 25.80f, 25.63¢
I 24.63 23.63 25.14 23.76 24.7 24.97", 24.63!
XIII 23.67 22.47 23.91

XV 22.45 21.45 2248 21.32 22.53k

VIII 20.45 19.70 19.84 18.47 19.46 18.61', 20.09™

“Reference 97.
bReference 98.
“Reference 71.
dReference 72.
¢Reference 99.
Reference 90.
&Reference 91.
hReference 100.
iReference 101.
IReference 84.
kReference 85.
IReference 88.
MReference 89.

contributions reasonably well. Actually, when only the second
order contribution is taken into account, the RPA reduces to
the direct term in second order Mgeller Plesset (MP2) pertur-
bation theory, and MP2 is known to work very well for energy
differences in water clusters.

From our point of view, RPA also improves upon sim-
ple pair-wise interaction potentials or vdW density functional
theory. These two methods decrease the equilibrium volumes
of ice compared to standard semi-local functionals by roughly
the same amount for low and high density phases.”* As a re-
sult, the volume change from hexagonal ice to ice VIII is too

2=
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AV, (A’H,0)
&
T
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FIG. 6. Equilibrium volumes relative to ice I. AVy is the volume with
respect to the I, volume for the same method: AVy = Vp(phase) — Vo(Ip).
Other theoretical data marked with (a) and (b) are from Ref. 74 [PBE, PBEO-
vdW(TS), DMC]. Experimental data (c) are compiled in Table III.

small. The RPA almost entirely mends this error (compare
Fig. 6), in particular, when zero point vibration corrections
are accounted for.

Up to date, only diffusion Monte Carlo was able to at-
tain a similar—or more precisely—slightly superior descrip-
tion, but as already emphasized, at a very steep computa-
tional cost. RPA achieves results that are close to DMC, but
at a fraction of the computational cost. For instance, the total
compute time for the rather complicated ice XIII phase (28
molecules) is about 4 h on 64 cores, and the compute time for
ice IX (12 molecules) about 2 h on 16 cores (both calcula-
tions performed using 2 x 2 x 2 k-points). These favorable
timings were achieved with a not yet released RPA code that
scales cubically with system size and linearly with the num-
ber of k-points. Given the favorable results for the energet-
ics obtained here and these favourable timings, we believe an
ab initio treatment of ice on surfaces is now within reach. The
only downside of the random phase approximation is that the
ice binding energies with respect to isolated water molecules
are in error by about 50 meV.

In the present work, we have used two RPA flavors:
the usual combination of EXX+RPA @PBE, where both the
RPA correlation and the EXX are evaluated using the same
DFT orbitals, and the combination of RPA@PBE with ex-
act Hartree-Fock energies. The first method underestimates
the binding energies and overestimates all predicted volumes.
The second approximation overestimates the binding energy
and underestimates the equilibrium volumes. A simple solu-
tion to this problem is to determine the exact exchange energy
from orbitals obtained with a so called half-half functional, a
functional where half the HF exchange and half the den-
sity functional theory exchange is used. The final results are
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merely in-between the two limiting approximations consid-
ered here and in almost perfect agreement with the experi-
mental and DMC results.
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