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Convergence of many-body wave-function expansions using a plane-wave basis:
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Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence
of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function
expansions. Simple analytic and numerical results from second-order Mgller-Plesset theory (MP2) suggest a
1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation,
allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation
when constructing many-electron wave functions is far from obvious, and here we propose several alternatives
based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated
for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase
approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods
and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto
the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems.
We demonstrate this explicitly for solid and molecular lithium hydride.
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I. INTRODUCTION

The exact wave function for the N-particle nonrelativistic
electronic Schrodinger equation can be expressed as an
expansion of Slater determinants which span a complete
N-electron space in which the problem is posed. These Slater
determinants, in turn, are comprised of the antisymmetrized
products of spin orbitals, the set of which form a complete
one-electron space. In general, however, neither the complete
N-electron space nor the complete one-particle space can be
represented exactly, and unavoidably we must make do with M
spin orbitals and, at most, the corresponding ( % ) determinants
in the N-electron Fock space that these spin orbitals can
construct.

Even within this finite set of determinants, it is extraor-
dinarily difficult to construct exact solutions, and in practice
one has to resort to approximate theories which in quantum
chemistry form the set of standard models.' These range from
the single Slater determinant used in Hartree-Fock (HF) theory
to the variationally optimized linear combination of the full set
of Slater determinants found by full configuration interaction
(FCI).>3 The coupled-cluster and many-body perturbation
series form two distinct hierarchies. The ground-state energy
retrieved by FCl is the variationally lowest that can be achieved
from this one-electron basis, within the wave-function ansatze
prescribed, and so is often termed the exact solution in this
basis.

However, the true solution to the Schrodinger equation
can only be reached using FCI in the limit that the finite
one-particle basis spans all of space, which typically entails
M — oo. Since this limit can never be reached in practice,
schemes must be devised to find the behavior of expectation
values to allow for extrapolation to this limit. The complete
basis-set correlation energy, the difference between the HF
and FCI energies in the limit of M — oo, is an important
goal in ab initio electronic-structure theory. Here, we will
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concentrate on the convergence of the correlation energy
noting that the convergence of the Hartree-Fock energy and
orbitals is generally well understood and in the case of real
systems can be obviated with pseudopotentials or carefully
chosen atom-centered basis sets.*> However, the convergence
of the correlation energy in a plane-wave basis set, which has
substantial contributions from electron-electron cusps, has not
been widely investigated.

In studies of molecular systems, the complete-basis-set
(CBS) correlation energy can be reasonably well approximated
by extrapolation. In doing so, a certain functional form of
the correlation energy is assumed, which can be rationalized
by a partial wave analysis of the wave function around the
electron-electron cusp. Most wave-function-based calcula-
tions of atoms and molecules employ correlation consistent
Gaussian-type orbital (GTO) basis sets, first developed by
Dunning and co-workers, which show systematic behavior
for many atoms and molecules,®’ converging as 1/X> where
X refers to the cardinal number of the basis set.® Since this
cardinal number refers to a principal expansion, the number of
orbitals (M) increases as X, and this convergence is equivalent
tol/M.

The application of quantum chemical wave-function-based
methods to the solid state is a young and emerging field.’!
Even within this body of work, most of the approaches have
relied on a basis-set expansion in periodic GTOs, where
the wealth of knowledge on the convergence properties of
these basis sets is well established from decades of studies in
molecular calculations. Far less work has been undertaken on
the convergence of determinantal wave-function expansions in
a plane-wave basis, despite presenting a number of advantages
when working in the solid state. By specifying a single cutoff
parameter, an arbitrarily large set of linearly independent and
intrinsically periodic basis functions can be produced, which
require no optimization, are free of basis-set superposition
error, and well describe the nature of delocalized electrons,
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which are particularly difficult for expansion in a more
localized basis.

Since wave-function-based theories will inevitably be much
more computationally expensive, it is imperative to develop
methods in which the convergence with respect to the one-
electron basis is as rapid as possible. Although complete basis-
set results using extrapolation procedures have been presented
for systems in a plane-wave basis,'®2° a systematic analysis
and rigorous justification for these schemes is still lacking.
Furthermore, the question arises as to whether more efficient
basis-set truncations exist within the complete plane-wave set,
which allow for a more reliable extrapolation to the complete-
basis-set limit. This paper aims at a rigorous investigation of
different extrapolation methods for the homogeneous electron
gas (HEG), which is taken to be the archetypal solid state
model system, in order to extend the practicality of correlated
wave-function expansions in plane waves.

The limiting behavior of basis-set convergence is due
to the inability of determinantal expansions to describe
the features of the electron cusp, and this is independent
of the precise parametrization of the wave function arising
from the underlying method. This allows scaling relationships
to hold across the whole hierarchy of standard models. As
such, this paper examines the behavior of basis-set incom-
pleteness error in plane waves on the correlation energy of a
finite N-electron gas by use of second-order Mgller-Plesset
theory (MP2), where analysis can be directly performed and
numerically verified to gain a preliminary understanding of this
error. This is possible due to the MP2 correlation energy of a
finite electron gas being well defined in spite of the divergent
behavior of this energy at the thermodynamic limit.

We show that a more natural interpretation of basis sets in
momentum space can be found that relates to the momentum
transfer vector. This discussion gives rise to a new type
of basis-set truncation that we can use to better eliminate
basis-set incompleteness error in MP2 and other theories.
We then move away from the electron gas as a model
system to show how these findings can be transferred back
to real, solid state systems using lithium hydride, which
has been used extensively as a benchmark case in solid
state work.”!1822-24 We hope that this provides a thorough
analysis of basis-set incompleteness in calculations where a
plane-wave basis set is used and will allow for extrapolations
to the CBS limit to be found, both more reliably and more
efficiently.

We note that extrapolation is not the only method by which
basis-set incompleteness error can be removed. It is now
increasingly common practice in molecular quantum chem-
istry to use corrections based on including explicit functions
of the interelectronic distance into the wave function.'®?
Furthermore, there have been significant advances in applying
transcorrelated methods directly to the homogeneous electron
gas.?6? Diffusion Monte Carlo, which is in general not
particularly sensitive to basis set, has also been incredibly
successful in describing ground-state energies and proper-
ties for the HEG.?**? Nonetheless, we believe that simple
complete-basis-set extrapolation techniques would enable
reliable benchmarks to be obtained for the future development
of wave-function techniques in periodic systems.
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II. AN ANALYSIS OF PLANE-WAVE BASIS-SET
INCOMPLETENESS ERROR

In this section, we will use the archetypal model solid
state system, the homogeneous electron gas, to better un-
derstand basis-set incompleteness in plane waves. We will
introduce the HEG Hamiltonian and show how MP2 theory
can be applied to produce an analytic expression for the
correlation energy approaching the complete basis-set limit,
which we verify numerically. Although it is well known
that the correlation energy arising from MP2 theory di-
verges in the thermodynamic limit due to long-wavelength
excitations as the band gap closes,* the qualitative cusp
behavior as interelectronic distance goes to zero is inherently
captured by short-wavelength excitations.** As such, using
MP2 as a model theory for correlation provides a good
starting point for our discussion of basis-set incompleteness

error.’

A. Using the electron gas as a model system

The N-electron HEG simulation-cell Hamiltonian can be
written as

. 1, 11
H = Z—EV(X +l§; Evaﬁ =+ ENUM, (1)

o

where o and B are electron indices and the two-electron
operator Uyg is

4

4z 0
b= o 4 7 @)

0, q=0.

vy is the Madelung term, which represents contributions to the
one-particle energy from interactions between a point charge
and its own images and a neutralizing background, and 2 is
the real-space simulation cell volume. Together, all 7,5 and
vm form what is termed the Ewald interaction.*®° Hartree
atomic units (a.u.) are used throughout and energies quoted
are total correlation energies for the system considered unless
otherwise stated.
The one-electron basis set is taken to be plane waves

1 .
vi(x) = y;(ro) = \/;elk-’”r%,m 3)

where the wave vectors K; are chosen to correspond to the
reciprocal lattice vectors of a real-space cubic cell of length L,

2

k = T(n,m,l), 4

where n, m, and [ are integers and Q2 = L3 is the real-space
unit-cell volume of a cubic cell.

In this basis, the HEG Fock matrix is diagonal and the
Hartree-Fock determinant is the normalized, antisymmetrized
product of N plane waves with the lowest kinetic energy,

Dy = AlYi(x)¥(x2) - - - Ye(xw)] &)
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with the energy

N N N

(Dy| 1| Do) = Z szf—”mﬁ 2 Now,
©)

where the removal of the q =0 term in the two-electron
operator has removed the two-electron Coulomb term, cor-
responding physically to the cancellation of the classical
interaction between the electrons and the interaction between
the electrons and the neutralizing background. The remaining
terms in Eq. (6) are the kinetic energy, the exchange energy,
and the Madelung energy.

B. Convergence of finite basis MP2 calculations

Mgller-Plesset (MP) theory attempts to find the correlation
energy of a system by treating the full electron-electron
interaction perturbatively within Rayleigh-Schrodinger per-
turbation theory.’! Taking the zeroth-order Hamiltonian as
the sum over Fock operators and the Hartree-Fock solutions
as the zeroth-order wave functions, the first-order energy is
the Hartree-Fock energy. This makes the second-order term
(MP2) the leading contribution to the correlation energy of the
problem.

The MP2 correlation energy can therefore be expressed as

; )

Evpr =

Z [(Di| H'| Do) |?
TS Ey — Ej

where H' is the fluctuation operator defined as the difference
between the Hamiltonian and the sum over the Fock operators.
The zeroth-order wave functions D; are the up to N-fold
excitations of the Hartree-Fock determinants into a complete,
typically infinite, basis. Truncating the basis set at some

M plane waves, these determinants are now the (’)[(%)]

rearrangements of N electrons in M spin orbitals. Since H’
contains at most two-electron operators, only the O[N>M]
doubly excited determinants of Dy make a contribution to this
energy. Single excitations of the reference are not coupled to
the reference due to Brillouin’s theorem, but also because,
in the HEG, a single excitation necessarily forms a many-
particle state of a different total momentum. Finally, the

zeroth-order energies E; are sums over the constituent orbital
|

2| (kik;| 912K Kp)|*

Empr = E Z
Ochak; ks <hkh eky) +e(k;) —e(ky) — e(ky)
0<k;<k; ky<ky<k,
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energies €;:
1
€ = Ek? Z (1911 /i) = S om,
J€occ
Jj#i
| ®)
€=k~ Z (ajlonlja),
J€occ

where in these equations, i refers to any occupied orbital and
a refers to the virtual orbitals. The two-electron integrals can
in general be evaluated as

(i19121ab) = 010,80, 00 / / dr1dra (0 ¥ () D1a(r1. 1)
X o (F) (). ©)

These equations include an exchange energy explicitly, and in
the thermodynamic limit tend towards the well-known form>?

1 k
&=k + = fx),
2 b4
where x = k/kr and

14+x
1—x

(10)
)
f)y =1+ In . (1)
2x

This allows the MP2 energy to be rewritten as

1 |(ij|D12lab) — (ij|012|ba)|?
E = - , 12
M 4.2 € t+e€—€ —€p (12)
ijeocc
abevirt

where indices i, j, a, and b are spin orbitals.

This can be solved directly for the noninteracting reference
in the limit of both an infinite number of electrons and an
infinite virtual k space.’® However, the limit of a finite number
of electrons is dependent on the form of potential 9, and the
shape of the real-space unit cell. Furthermore, it is typical to
use a finite basis set to describe the virtual manifold, which can
be achieved in the plane-wave basis with a choice of kinetic
energy cutoff E; = %kf such that

DD DD DD D) DD DI L)
ijeocc 0i0; 0<ki<ks abevirt 0i0; ky<ka<ke
ngjgkf kf<kb§kc

where k; = |Kk;|, etc., and sums over spins have been written

explicitly. Using this substitution, Eq. (12) can be recast in a
finite basis

(kik;[012]kakp) (kiK | D12|kpKq)
(ki) + e(k)) — e(ky) — e(kp) '

(14)

2 X

O<ki<ky kp<ko<k,
0<ky<k; ky<ky<k,

where the sums over spins have been taken leaving a spin-free expression. The two sets of terms are referred to as direct and

exchangelike terms, respectively.

Defining vq as the q Fourier component of the potential, the four index integrals can be evaluated:

(kik;[012|KKp) = vk, —k, Ok, —k, .k, —k;

s)
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yielding
202
E _ 5 ki —k,
MP2 = E E ki —ky Ky —K;
Ajjab
0<ki<k; ky<ky<ke
ngjgkf kf<k},§k(
Uk —k, Vk; =k,

- D Sk,

0<ki<ks ky<k <k,
ngjgkf kf <kp <k,

(16)

where A4, is the difference between eigenvalues and depends
on the four indices. Values of Kk, in this representation are
constrained to obey momentum conservation

ki+kj=ka+kb (17)

due to 8k,-—ku,kb—kj’ and, therefore, the sum over k; makes at
most one contribution for every k;, k;, and k,. This is the
formulation of the MP2 energy that we will refer to as the
E-cutoff scheme.

The question we now seek to address is as follows: How
does the correlation energy captured by MP2 increase with the
energy cutoff of the basis set on approach to the complete-
basis-set limit? Since this question has not been addressed for
plane-wave basis sets, it is appropriate to conduct a simple
analysis as follows.

We seek an expression for the error of a finite calculation
conducted at a kinetic energy cutoff E; = %kf:

Evpa(ke), (18)

where the Eyp; (k) is the finite basis MP2 energy given in
Eq. (16). This can be evaluated by changing the limits on the
sums, such that

AEvpa(ke) = Empa(00) —

2v 2
AEvpa(ke) = Z Z Ok, —k, ky—k; — Pl ke
At]ab

O<ki<ky ka>k
0<kj<k; kyp>k.

Uk kavk —k,
- E E Ok, —k ky— N
0<ki<ky ko>k, ijab
0<k;<ks kyp>ke
(19)

Itis possible to simplify this expression in the high basis-set
limit. The orbital energies become dominated by high-energy
kinetic energy contributions, whereupon A;j,; k2. As k, >
ki and k, > k;, the numerator tends towards a behavior of
1/ k;‘. In this limit, the summation of k; and k ; yields a constant
factor, and the Kronecker delta reduces the double sum over
virtual orbitals to a single sum.

This leads to a leading-order expression of

1
AEvpa (k) Z Tk (20)
ko>ke @

where the sum can replaced by a spherically symmetric integral
and evaluated as

1
k2 X — 1)

AEMPQ(kC) X / dk a
kS K3

¢
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FIG. 1. (Color online) MP2 correlation energies for the 14

electron gas at r, = 5.0 a.u. retrieved as a function of (a) E, : and
(b) M~ (where M is the number of spin orbitals) tend towards a
linear relationship as the complete-basis-set limit is approached. In
each plot, the dotted lines refer to CBS limits for each basis-set size,
which are obtained by a linear extrapolation of this point and the
previous three points (sometimes not visible on the graph). Using
these extrapolated estimates, it can be seen that the M ™! power law
is smoother due to fewer finite-size effects; this is due to M being a
more appropriate variable to consider how much correlation energy
the basis set retrieves. For this system, M = 1030 corresponds to a
kinetic energy cutoff of 1.3077 a.u. or 35.59 eV, which changes with
both N and r, for the HEG.

3

This is equivalent to E, 2, due to the definition that E; =
%kg or M~!, where M is the number of k points contained
within the sphere defined by k.. In passing, we note that this is
the behavior that is also found for the correction to the energy
in the random-phase approximation.’*

Figure 1 shows numerical verification of this relationship
using r; = 5.0 a.u., a typical ry of real materials. In Fig. 1(a), a

3

relatively rapid tendency to follow a E, * power law is found.
Extrapolated results at each basis set (using this basis-set size
and the previous three basis-set sizes) show rapid convergence
to the infinite-basis-set result, although this tendency is not
smooth due to shell-filling effects. When instead a M ~! power-
law extrapolation is used, as in Fig. 1(a), this convergence
is somewhat smoother and better behaved for small basis-set
sizes (when the difference between the two power laws is more
pronounced).
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III. MOMENTUM TRANSFER VECTOR
CUTOFF SCHEMES

In this section, we develop a different type of basis-set
truncation for the HEG, based on the momentum transfer
vector. Rather than the conventional definition of a single basis
set for the whole calculation, we take the view that the basis
set can be defined differently for each electron or each electron
pair. This definition is not unique, even given a spherical cutoff,
and we develop three types of basis-set truncations showing
that there is one that gives more rapid convergence to the
CBS limit. This has the physical equivalence in reciprocal
space of smearing out the rigid spherical cutoff into the
surrounding space. This is motivated by a physical picture that
electron coalescences should be treated on the same footing in
momentum space.

A. Introducing the momentum transfer vector

Considering a general same-spin electron-electron—hole-
hole excitation ij — ab connected by a matrix element
(kik;|012|k.kp) — (KiK;|D12]kpK,). We can therefore define
two momentum transfer vectors for the excitation, g and g
(see Ref. 55):

ka:ki+g,
kazkj—g/,

ky =k, — g (22)
k =k +g, 23)

where the allowed g vectors are such that k, and k; are both
not in the occupied manifold. It is possible to re-write the sum
over k, and k;, in Eq. (16) in terms of these vectors,

2 _ '
Envpa(ke) = Z Z M

A
0<ki<k; kp<|k; +gl<k. ijab
0<kj<ks ky<lki +g/|<ke

Sgk;—g K

3

(24)

where, similar to before, g’ is specified uniquely by g, k;, and
k; using Sg,kj,gr,k,.

By analogy with previous work in solid state systems,
we now consider cutoffs that limit the extent of the momentum
transfer vectors, and as such we impose a cutoff on the g
vectors such that they do not exceed a kinetic energy E, =
% g?, and such that k, and k;, never reach the Ej-cutoff value
k.. The upper limit in the sum becomes entirely determined by

8ct

Evm(g) = Y >

0<ki<ky kp<lk; +gl

0<kj<ks kp<lk; +¢'|
8<8c
g'<g

19,20

T N
ijab

(25)

This gives us a new form of basis-set truncation, the behavior
in the large-g limit of which might be different to Eypy(k.)
[Eq. (24)], which we will now investigate.

It is also possible to remove the upper limits on the sums,
replacing them in with radially symmetric step functions in k
space,

Lolgl < g

26
0, otherwise (26)

O(g —8) = {
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yielding
2020(g — g.)

Aijab
0<ki<ky kp<|ki +gl
0<k;<k; ky<lki +g|
- E : E : 5quﬁg’7kf

0<ki<ky kp<lk; +gl
0<kj<ks kp<|ki +¢|

y VgUy O(g — 8.)O(g" — &)
Ajjab ’

27

This cutoff is shown diagrammatically in Fig. 2(a) for a
specific electron pair k; and k;, illustrating that the basis
set used to represent the virtual manifold is now no longer
consistent between different electron pairs. By allowing {g}
and {g'} to span a certain range in reciprocal space, the virtual
space represented by the sets {k; + g} and {k; + g’} span a
range dependent on k; and K, respectively.

More severely than this, the basis set we have defined is also
different for each electron. By considering a specific single
same-spin excitation (k;k;[012|k.Kp) — (kik;[D12|KpK,), this
means that sometimes the shorter momentum transfer vector
is allowed, while the longer is disallowed. This is shown
diagrammatically in Fig. 2(b).

Since this cutoff takes the view that each electron has its own
basis set, this will be termed the local E, cutoff. In Eq. (27),
this is represented by the different ranges of the sums over the
direct and exchangelike terms. In the exchangelike term, the
product of the step functions serves to disallow some longer-
momentum events. The implication of this is that in the general
hole pair function space, |k k) can be allowed while its
permutation Pir|k.k,) = —|k,k,) can be absent. This implies
that not all terms accounted for in the direct term are properly
balanced by the exchangelike term, and the antisymmetry of
the wave function is ultimately not properly restored.

In the conventional basis-set scheme described in Sec. II B,
there is a variational principle: for a finite basis set, you
are guaranteed to not retrieve more correlation energy than
the complete-basis-set limit. As the basis set is enlarged, the
correlation energy is systematically lowered to the complete-
basis-set limit correlation energy. This variationality is broken
by use of a local E, cutoff.

We can define two further ways of defining an E, cutoff,
which do not suffer from these limitations. In the intersection
E, cutoff, we force the direct term to be removed from the
sum if the exchangelike term is rejected for the same {g,g’}
pair:

202P(g.g)
Ajjab
0<ki<ky kp<lk; +gl
0<k;j<ks ky<|ki +¢/|
5 VeV P(g,8)
0<ki<k; ky<lk; +egl iab
0<kj<ks kp<lk; +¢'|
(28)
where P(g,g) is given by
P(g.g) = O(g — 8.)0(g — go), (29)
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(a) (b)

k, &

a

(c)

FIG. 2. (Color online) Discussion and diagrams of cutoffs using
momentum transfer vectors. The white circle represents the Fermi
sphere, and the volume excluded from the virtual space by occupation
effects is not considered. (a) This is a diagram of the local E, cutoff.
Using a simple momentum transfer cutoff scheme [Eq. (27)] makes
the excitation space (set of possible virtual orbitals to be excited
into) k;,k; — {k; +g},{k; + g’} dependent on k; and k; when
they are not at the I" point. This implies that the sets {k; 4+ g} and
{k; 4+ g} are not the same. (b) This is a diagram of the local E,
cutoff. Comparison between a specific excitation k; ,k; — k, .k, and
ki k; — k,k,. These differ only in the permutation of the hole states
(or, equivalently, the electron states). In the case of the local E ,-cutoff
cutoff scheme [Eq. (27)], one term (solid line) is allowed and the
other term (dashed line) is disallowed. (c) This is an illustration of
the intersection E, cutoff. One solution to the problem illustrated
in (b) is to only allow excitations to the region of k space formed
by the overlap of the two regions in (a). Now, both terms are either
disallowed (as shown here) or allowed and permutational symmetry
is restored. (d) This is an illustration of the union E, cutoff. A second
and different solution is to extend the allowed space of (a) to anywhere
that either {k; 4 g} or {k; + g’} would be allowed, also restoring the
permutational symmetry.

which can be thought of as a masking function in that
it disallows certain electron pairs from being connected to
different parts of the virtual space.

In the union E, cutoff, we force the exchangelike term to
be preserved if the exchangelike term is rejected for the same
{g.g'} pair by use of

P(g.g) =0(g — g) + 0O(g — g.) — O(g — g)O(g" — go).
(30)

where the term ©(g — g.)©(g’ — g.) prevents double counting
when O(g — g.) and ©(g’ — g.) are both 1.

The cutoffs are named after how they are generated from
the sets {k; + g} and {k; + g'}, shown in Figs. 2(c) and 2(d).
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FIG. 3. (Color online) Comparison of correlation energy retrieved
as a function of basis-set size for a variety of cutoff schemes.

B. Comparison of the different cutoffs

Figure 3 shows correlation energies with these different
cutoff schemes. In the case of the E, cutoffs, the M is the
number of spin-orbital basis functions in a sphere with radius
g. centered at the I' point. In some cases, in particular the
union E, cutoff, the number of basis functions used for
the calculation is higher, but we believe that there is no
better parametrization of the size of the basis set than this
effective M.

All of the schemes regardless of the cutoff scheme converge
to the CBS limit ultimately as 1/M. As the size of the basis
set goes to infinite extent, all £, cutoffs ultimately tend back
towards the E} picture since the displacement of the occupied
k points from the I point becomes negligible and the lines
become identical. For the intersection and local E,-cutoff
schemes, the curves, however, merge only at very large basis
sets.

The positioning of the curves of each E, basis set can now
be compared with that of the corresponding E; basis set. Both
the intersection and union E, cutoffs can be thought of as lying
in a larger E-cutoff basis set and are variational upper bounds
of this larger basis-set energy. In the intersection E,-cutoffs
scheme, terms are effectively removed from electron pairs that
are of significant distance from the I" point. Furthermore, all
excitations lie within g, of the I point, meaning that this basis
set produces a variational upper bound to the Ej-cutoff basis
set of the same size (k. = g.). In contrast, the union E, cutoff
augments the basis set for those electron pairs that are not at
the I" point by including basis functions that can have as high
an energy as %(gc2 + k}). As such, this is now a variational
upper bound of the Ej basis set that completely encloses the

radius (g2 + k2)2.
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FIG. 4. (Color online) Graphs comparing (a) union E, cutoff and (b) E; cutoff for a range of different densities. As the density is lowered,
the extrapolations become more distant from the CBS limit even for MP2 theory, due to a rising contribution from exchange in the Hartree-Fock
orbital energies that is not well-behaved with respect to M. Furthermore, more pronounced finite-size effects are seen. The extrapolated results
shown by the dotted lines are only represented with error bars in two cases (r, = 0.5 a.u., ry, = 20.0 a.u.) for clarity. Complete-basis-set limit
energies from which these basis-set incompleteness errors are derived are tabulated in Table I.

In contrast, the local E, cutoff is neither variationally
bounded by the complete-basis-set limit nor any Ej-cutoff
basis set. In general, it can be considered that it has fewer
exchangelike terms than the corresponding union basis set, and
as such will produce a lower correlation energy than all of the
basis sets with the same cutoffs. Since the exchangelike terms
in the correlation energy are positive and partly neglected, the
correlation energy becomes more negative than for the corre-
sponding union basis set. Although this seems advantageous
in the first instance, as it seems to retrieve a greater fraction
of the CBS correlation energy, already in Fig. 3 it can be seen
that there is a tendency for this curve to arc at low basis sets,
and could even have a maximum point in extreme cases.

Each cutoff has a separate behavior when a 1/M behavior
is used to extrapolate the result from a series of finite basis
calculations. As noted previously, the Ej-cutoff basis set
suffers from strong finite-size effects, causing the extrapolation
to behave jaggedly around the CBS result. This can be thought
of being due to trying to recreate a spherical cutoff with a
cubic grid. In common with this, the intersection E, cutoff has
even stronger shell-filling effects, which are more pronounced
because this basis set is trying to recreate the overlap between
two spheres with this cubic grid, a shape with an even smaller
volume to surface ratio. The local and union E, cutoffs have
much smoother convergences with 1/M and their extrapolated
results converge much more smoothly to the CBS limit.
This could be because we have replaced spheres in k space

with more complex objects, and also are summing in more
excitations for a given M.

In conclusion, the union E, cutoff seems to have the
most desirable properties: variationality, correct symmetry of
the wave function, smoothness, and speed of convergence
and extrapolation. When the density, as represented by r;,
is changed, we might expect these relationships between
the cutoffs to change. In Fig. 4, we have considered the
fraction of the CBS correlation energy obtained by basis
sets at both higher and lower densities (r; = 0.5—20.0 a.u.)
for the union E, cutoff and Ej cutoff. As r, is raised, the
basis-set extrapolation becomes increasingly distant from the
CBS result at smaller basis-set sizes. This is due to the rise
in the contribution from the exchangelike term in the MP2
energy, which has a less well-defined convergence with respect
to the M parameter that we are using. Furthermore, finite-size
effects become more visible. From these graphs, it is possible
to see that for this system the union E, cutoff does continue
to be the cutoff of choice for the reasons outlined above.
For completeness, values of the complete-basis-set correlation
energy for MP2 are presented in Table 1.

IV. GENERALIZATION TO OTHER SINGLE-REFERENCE
QUANTUM CHEMICAL METHODS

In this section, we seek to generalize the discussion
above to other single-reference quantum chemical methods,
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TABLE I. Values of the complete-basis-set limit MP2 correlation
energy obtained by extrapolation for N = 14. The error estimate,
shown in brackets, refers to the random error in the last digit from
extrapolation.

ry (a.u.) Correlation energy (a.u.)
0.5 —0.575442(1)
1.0 —0.499 338(2)
2.0 —0.398 948(2)
5.0 —0.255664(4)
10.0 —0.163951(6)
20.0 —0.09749(1)

in particular the coupled-cluster-doubles (CCD) theory>® and
the random-phase approximation plus second-order screened
exchange (RPA + SOSEX).”’ In these methods, the energy
estimator depends on amplitudes, all of which vary when the
basis-set size is changed. This is in marked contrast with MP2
theory, in which only those basis functions added when a
basis set is enlarged acquire new contributions to the energy.
We will discuss two possible strategies for extrapolating
the energy to the CBS limit. We will show that a direct
extrapolation based on calculations at different basis-set sizes
is one method for achieving the CBS limit, and that both
CCD and RPA 4 SOSEX correlation energies behave as 1/M
in common with the MP2 correlation energy. However, this
suffers from the same slow convergence of the Ej-cutoff
strategy outlined from MP2.

In an attempt to emulate the more effective extrapolation
to the CBS limit provided by the momentum transfer vector
cutoff schemes, we introduce a new approach to this problem,
single-point extrapolation, in which the contributions to the
energy from a single calculation are regrouped according to
their arrangement in reciprocal space to form energy estimates
from effective basis-set sizes. These smaller effective basis-set
energies are then used to provide an extrapolation to the CBS
limit. Although it will be demonstrated that this approach does
provide more effective convergence, amplitude “relaxation”
as the basis-set size increases causes a problem with CCD,
especially at r; = 5.0 a.u. However, this crucially also allows
for the adaptation of extrapolation to solid state systems, where
direct extrapolation is not only slower to converge, but also
made difficult to achieve by the projector augmented wave
(PAW) approximation.

A. Direct extrapolation of CCD and RPA + SOSEX

In both CCD and RPA + SOSEX, the energy can be written
in a configuration-space formalism as

occ M

Ecor(M) =) >~ x5 (M), 31

ij ab

where Xll:,_ “l:_ " are the k-point labeled contributions to the energy
which express a product of amplitudes on double excitations of
the reference determinant and the corresponding Hamiltonian
matrix element

k.kp __

k
Xk, = (2vk-k, = i1, )17 (32)
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The Appendix A contains a more detailed discussion of
CCD and RPA 4+ SOSEX and explains the evaluation of
the respective tl.“j” amplitudes. The additional complexity

compared to MP2 is that all tfj}’ vary when the basis-set size is
increased. Again, we quantify the size of the basis set of the
virtual orbitals using M. M corresponds the total number of
orbitals inside the cutoff sphere (E; cutoff in MP2).
Performing calculations at different cutoffs allows direct
extrapolation of the energy, with this behaving as 1/M in
the large-M limit. Comparison between the finite basis-set
energies retrieved by different quantum chemical methods
is shown in Fig. 5 for the 14-electron problem at r; = 1.0
and 5.0. All methods considered show a 1/M relationship in
the high-M regime. In this graph, exact benchmarks from an
electronic-structure method called initiator full configuration
interaction quantum Monte Carlo (i-FCIQMC) are presented
for comparison.’® This method utilizes a stochastic algorithm
to calculate FCI accuracy energies at greatly reduced compu-
tational cost.>>%" The gradient and onset of the 1/M behavior
varies with ry and method. At the higher r; value, CCD best
resembles the FCI behavior, with MP2 and RPA + SOSEX
resembling one another. All of the methods behave similarly
with M at the lower r, value. The ability of RPA + SOSEX
to retrieve most of the FCI correlation energy at ry = 5.0
can be attributed in part to capturing too much (dynamic)
correlation energy at high M. The crossover between CCD
and RPA 4+ SOSEX [Fig. 5(b)] highlights the difficulties
of comparing methods at a finite basis-set size. Clearly,
RPA + SOSEX or MP2 can not be used to estimate the finite
size and basis-set incompleteness error of i -FCIQMC or CCD,
whereas CCD may be well suited to correct these errors in
i-FCIQMC. No attempt has been made to extrapolate these
methods to the thermodynamic limit, in which MP2 is well
known to diverge, since this is beyond the scope of this paper.

B. Single-point extrapolation of CCD and RPA + SOSEX

We now seek a momentum transfer vector cutoff scheme
for CCD and RPA + SOSEX, in particular aiming to reproduce
the properties of the union E, cutoff explored in Sec. III. After
performing a single calculation in a basis set,

occ M’

Ecore (M) =) )" i (M). (33)

ij ab
Applying the masking function P(g,g’) defined previously for
the union E, cutoff,

P(g.gsM') = 0(g — g) + O(g' — g)
—0O(g — 2)O(g" — &), (34)
which is associated with a new basis-set size M’ (described in
Sec. III), to Eq. (33) yields

occ M
P M) = 33 o)
ij ab
X Pe(ki — ko Kj — ks M), (35)
where we have explicitly noted that this formulation of the

correlation energy is dependent on both M’ and M. These
correlation energies are labeled both by a true basis-set size M
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FIG. 5. (Color online) Comparison of correlation energy for the N = 14 system for (a) r, = 1.0, (b) r; = 5.0 retrieved as a function of
basis-set size for a variety of quantum chemical methods. Their tendency to display a 1/M trend varies from method to method as well as with

r, (see text for further discussion).

and what we will call an effective basis-set size M’. We now
follow the procedure of performing a single calculation with
M spin orbitals, take the amplitudes, and apply the relationship
given in Eq. (35) for different values of M'.

By analyzing Eq. (35), it is possible to see that there are
two limiting values for Ecoyer. When M’ = 0, the effective
basis-set correlation energy is zero, and when M’ is such
that all possible momentum transfers are included in the
sum (g, is larger than all |k, +Kk¢|), the effective basis-set
correlation energy is simply the basis-set correlation energy
El, [Eq. (33)].

In-between these limits, if the amplitudes ¢{” are always the
opposite sign to the matrix element (2vg,—k, — Vk;—k,), there
will be a monotonic decrease of E o et (M, M) to the basis-set
correlation energy as M’ is increased.

In MP2 theory, this monotonic decrease will be strictly
observed, and can be shown to be identical to the union
Eg-cutoff scheme when k. > g. + ky. For this region, 0 <
8c < k. — ky, therefore, the same tendency to follow a 1/M
behavior will be seen. When g. > k. — ky, deviation from this
behavior will be seen due to momentum transfer vectors being
disallowed from not being in the original k. basis.

Unlike the previous formulation, this can now be applied
to any method with an estimator of the form Eq. (31).
However, since the amplitudes also depend on M, this is an
approximation, and convergence with this second cutoff should
also be obtained. We note that in MP2 theory, Xll:,. “kkj”(M ) does
not depend on M and the single-point extrapolation scheme
becomes the cutoff schemes described in Sec. III.

Figure 6 shows that these effective basis-set energies have
the property that they also converge as 1/M’ and can be
used to extrapolate for a CBS estimate. Figure 7 shows
these extrapolations for RPA 4+ SOSEX and CCD, comparing

ab
1

them with conventional direct extrapolation. In general, the
RPA + SOSEX correlation energy converges faster using the
E,-cutoff single-point extrapolation than the Ej-cutoff direct
extrapolation, which also has the advantage that only one

—-0.44
—~ —0.45
& —0.46
=
20 —0.47
@
§ —-0.48
S
£ —0.49
:2 =—=a Direct extrapolation
% —0.50r - Effective energies
O %
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—_ 9]
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o1

M~ or M'—1

FIG. 6. (Color online) Comparison between direct extrapolation
and single-point extrapolation (SPE) for RPA + SOSEX on the
N =14, ry = 1.0 a.u. gas. In the conventional direct extrapolation,
calculations are performed at a series of basis-set sizes M and then
extrapolated using a 1/M fit to the high-M limit. In the SPE, a
single calculation is performed at an overall basis-set size of M, in
this case M = 682, and effective basis-set energies are constructed
according to Eq. (35) over the full range of M’. Some of these points
are discarded as M’ approaches M since not all momentum transfer
vectors can be accommodated within the basis set (dashed green
line, discussed in the text). The points where M > M’ have not been
included because they are not visibly different on this scale. The
extrapolations are shown by dotted lines, and agree in the CBS limit
within reasonable extrapolation error estimates (~2 x 1073 a.u.).
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FIG. 7. (Color online) Correlation energies calculated for the 14-electron system using RPA + SOSEX at (a) r;, = 1.0 and (b) r, = 5.0 and
using CCD (c) ry, = 1.0 and (d) ry = 5.0. Direct extrapolation and single-point extrapolation (SPE) are compared at a variety of basis-set sizes
(SPE curves just show extrapolated results). SPE performs best for RPA at r, = 1.0, where it converges faster than direct extrapolation, and
worst for CCD at r; = 5.0, where it converges slower than direct extrapolation.

calculation needs to be performed at a single basis-set size. For
CCD, this advantage is greatly obscured by finite-size effects
(which would become less for larger system sizes) and is not
seen at all for r; = 5.0 a.u. due to flattening off of the finite
basis-set correlation energies and greater coefficient relaxation
effects arising from stronger correlation.

Extensive discussion and analysis of relaxation effects are
beyond the scope of this paper, but this method has also
been successfully applied to the stochastic quantum chemical
method i-FCIQMC, and the further benefits of applying such
a technique in a stochastic framework are discussed in Ref. 61.

V. APPLICATION TO GENERAL SOLID STATE SYSTEMS

In this final methodological section, we discuss extrapo-
lation schemes available to solid state calculations using a
plane-wave basis set. We start by noting that for solid state
systems, the previous methodology of an E; cutoff (Sec. II B),
or equivalently, an M “true” basis set (Sec. IV) is not easily
defined. Previous work to resolve this in a plane-wave basis
set has used a resolution of the identity basis set to identify
Hamiltonian matrix elements. Following a similar argument
made in this paper, previous authors have found that the
correlation energy converges with respect to this auxiliary
basis set as 1/M. However, this greatly resembles the local
E, cutoff described in this Sec. III and with the most severe
penalty being that it is not variational with the CBS limit.”’ We
therefore examine the improved extrapolation strategies based

on the single-point extrapolation scheme discussed previously
(union E, cutoff and Ej cutoff), which we believe to restore
variationality and correct symmetry properties. Finally, we
show how this can be applied to an example periodic system.

A. Formulation of the single-point extrapolation for solid state
systems

The correlation energy expression in general wave-
function-based methods is given by

M
Eeon(M) = Z Zz;'jb(zv;;b — Py (36)

ij ab

Theindices i, j,k and a,b,c,d refer to occupied and unoccupied
orbitals, respectively, and are understood to be a shorthand
for the band index and Bloch wave vector. In contrast to
the homogeneous electron gas, however, the orbitals are
no longer constituted by plane waves and correspond to
eigenfunctions of the respective Hartree-Fock (HF) or Kohn-
Sham (KS) one-electron Hamiltonians. M corresponds to
the number of basis functions used in the description of
occupied as well as unoccupied orbitals. vfjb and t{’j” refer to
electron repulsion integrals and many-electron wave-function
amplitudes, respectively:

ab _ 62/ (%Il‘)(rlllfa)(llfjIr/><l"|1/fb)dr/dr_

ab — 37
i - (37)

v
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For the sake of brevity, we have neglected single excitation
(SE) contributions to the correlation energy in Eq. (36).
Depending on the approximation and reference determinant
used in calculating the wave function, SE contributions might
have to be included but do not modify any of the conclusions
drawn below.

We now seek to apply the previously outlined union E, and
Ey single-point extrapolation scheme to general solid state
systems. To this end, we introduce a projection matrix that
transforms the HF/KS orbitals onto a plane-wave basis set and
reads as

Ung = (9n1G), (3%

where |G) is a plane wave, e'6T and ¢, constitutes a HF/KS
orbital. If no k-point sampling is used, G corresponds to a
reciprocal lattice vector that lies within a given spherical cutoff.
For arbitrary k-point meshes, G refers to a linear combination
of a reciprocal lattice vector and the Bloch wave vector of the
corresponding orbital ¢,,. As such, the following equations can
all be implemented in the framework of a fully periodic code
that samples arbitrary k-point meshes straightforwardly. In
this study, we will, however, restrict ourselves to I'-point-only
calculations. We note that
Sum = Y _ UnUg,- (39)
G
If the employed finite plane-wave basis set is complete and
large enough to span the space of all orbitals ¢,, U, becomes
a unitary matrix. However, in our case, we use fewer orbitals
than plane waves. We typically choose a plane- wave basis set
for which U, is not full rank, and calculate U G using a
singular value decomposition.
Inserting Eq. (39) into (36) gives

~GG’ ~G'G
Eeor =) Y Bl (205 — 0ar). (40)

i GGG
where
e = > U6 UgaUgpviy (41)
jab
and
S0 = Z U](,”Ua(;Ub(,’ : (42)
jab

In contrast to Eq. (36), Eq. (40) is suitable for the extrapolation
schemes described in Sec. III since the indices G, G’, and G”
refer again to plane waves. Inserting a masking function that
has been introduced for the union E, cutoff into Eq. (40) gives

o.M = 32 3 00

i GGG
x Po(G' — G",G —G"; M'), (43)
where
X (M) =T (2050 — T (44)

Note that only three out of four orbital indices are transformed,
and that the transformed x is not symmetric. Due to momen-
tum conservation in the transformed basis, the (truncated)
correlation energies obtained are, however, invariant with
respect to the transformation of i. Note that E oy (M, M")
converges towards Eq. (36) for a sufficiently large M.
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Replacing P,(G' — G",G — G"; M') with P(G',G"; M') =
BO(G)O(G") in Eq. (43) yields effective basis-set energies
analogous to the E} cutoff described in Sec. IIB.

We draw particular attention to XIG// '(M), which, unlike the
case of the HEG, depends implicitly on M even in MP2 theory.
This is due to the change in Hartree-Fock orbitals, commonly
referred to as orbital relaxation, as the basis set is enlarged.

B. Computational details

We employ the Vienna ab initio simulation package (VASP)
in the framework of the PAW method to carry out MP2
calculations of the LiH solid and molecule.®>%* In the PAW
method, the one-electron orbitals i are derived from the
pseudo-orbitals ¥ by means of a linear transformation®*

)+ Zuqz 13:))

The pseudo-orbitals ¢/ are the variational quantities of the
PAW method, and are expanded in reciprocal space using plane
waves. We note that only the pseudo-orbitals are employed in
calculating the projection matrix U, in Eq. (39). The index i
is a shorthand for the atomic site R;, the angular momentum
quantum numbers /; and m;, and an additional index ¢;
denoting the linearization energy.®> The all-electron partial
waves ¢; are the solution to the radial Schrodinger equation
for the non-spin-polarized reference atom at specific energies
€; and specific angular momentum /;. The pseudopartial waves
@; are equivalent to the all-electron partial waves outside a
core radius r. and match continuously onto ¢; inside the core
radius. The partial waves ¢; and ¢; are represented on radial
logarithmic grids. The projector functions p; are constructed
in such a way that they are dual to the pseudopartial waves,
ie.,

W) = DBl (45)

(Pild;) = &) (46)

For a more detailed outline of the PAW method and a thorough
discussion of the evaluation of electron repulsion integrals in
VASP, we refer the reader to Ref. 20.

The employed plane-wave basis set for the one-electron
orbitals and the transformation matrix U is defined by all e/C"
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FIG. 8. (Color online) The MP2 correlation energy of the LiH
2 x 2 x 2 supercell retrieved as a function of the basis-set size for a
variety of extrapolation schemes. The SPE curve shows the effective
basis-set energies produced from a single calculation with M = 2045.
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FIG. 9. (Color online) The MP2 correlation energy of the LiH
molecule retrieved as a function of the basis-set size for a variety of
extrapolation schemes. The SPE curve shows the effective basis-set
energies produced from a single calculation with M = 1647.

with wave vectors G satisfying the equation
(7?/2m)|GI* <Eu.

For the calculations of LiH, we use E.; = 400 eV. The
evaluation of electron repulsion integrals vfjb in the PAW
method requires an auxiliary plane-wave basis set. We choose
our auxiliary plane-wave basis set to be identical to the basis
set defined by Ey.

In this work, we employ 200 and 50 natural orbitals to
calculate the correlation energies of the solid and molecule,
respectively. Convergence in the natural orbitals basis is two
times faster than using Hartree-Fock orbitals. Natural orbitals
are calculated by diagonalizing the one-electron reduced
density matrix. A detailed explanation of this procedure can
be found in Ref. 18.

For the LiH solid calculations, we employ a supercell
containing 8 Li and 8 H atoms. The supercell has a volume of
136.24 A>. The LiH molecule is simulated using a box with
a volume of 91.12 A% and a bond length of 1.595 A. The Li
Ls electrons are frozen and do not contribute to the correlation
energies.

C. Results: LiH molecule and solid

In the following, we will apply three different cutoff
extrapolation schemes to the LiH solid and molecule using
MP2: (i) the local E,-cutoff extrapolation scheme that is
equivalent to the one previously outlined in Ref. 20, (ii) the
union E, cutoff, and (iii) the Ey cutoff. Figures 8 and 9 show
the convergence of the MP2 correlation energy of the LiH solid
and molecule, respectively. Both single-point extrapolations
show a much-improved behavior over the previous scheme
that is analogous to a local E, cutoff, where arcing causes
pathological behavior and poor CBS estimates at low M’. In
both solid and molecular LiH, the (union, SPE) E, cutoff
seems to converge quicker.

VI. CONCLUDING REMARKS

In this paper, we have investigated the convergence of cor-
relation energies using plane-wave wave-function expansions.
Starting by treating the finite simulation-cell electron gas with
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the simplest correlated quantum chemical method, second-
order Mgller-Plesset perturbation theory, we derive a func-
tional form of the finite-basis-set correlation energy of 1/M,
where M is the number of plane waves enclosed by a spherical
cutoff in k space. Although perturbation theory diverges in
metallic systems for any strength of Coulomb interaction,
the qualitative behavior of the wave function around the
correlation hole is in common with other higher-level methods.
We verify that this 1/M behavior extends to coupled-cluster
doubles (CCD) and the random-phase approximation plus
second-order screen exchange (RPA 4+ SOSEX), in common
with exact results from full configuration interaction quantum
Monte Carlo (FCIQMC).>%6!

By viewing the distribution of the wave function in
configuration space over double excitations, and relating this
to the corresponding k-space picture, we propose several
new basis-set truncations based on the momentum transfer
vector. We discuss these in terms of their comparative speed
and smoothness of convergence, recommending one scheme,
which we call the union E, cutoff, that gives overall the most
desirable properties. This is then generalized to other single-
reference quantum chemical techniques, allowing for the
development of a single-point extrapolation technique which
uses information from a single large basis-set calculation to
provide estimates for the complete-basis-set limit correlation
energy in CCD and RPA + SOSEX.

Finally, this is applied to real materials (molecular and
solid LiH). We find that the energies computed by single-
point extrapolation converge better and more reliably than
previous extrapolation techniques.?’ It is our hope that this
can be applied in future plane-wave wave-function-based
calculations.
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APPENDIX: CCD AND RPA + SOSEX

In the following, we will briefly outline CCD theory and
RPA +SOSEX. CCD is a widely used quantum chemical
method to study the electronic ground-state energy of atoms
and molecules and relies on an exponential ansatz for the
many-electron wave function that reads as %%

WD _ oloy, (A1)

where 75 refers to the double excitation operator™®
0OCC. unocc. 0OCC. unocc.
A bt ot b|\yab
DIWo) =Y > 1@ plpipipj W) =Y Y ai|we).
i<j a<b i<j a<b

(A2)

We choose ¥ to be the Hartree-Fock reference determinant.
The solution to the CCD wave function is obtained by
projecting WP onto a set of doubly excited determinants.
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This set of equations is termed amplitude equations. The CCD amplitude equations read as®®

__ .ab HF HF al al al ;bc bl cac bl
0=vj; + (eF + & — P —i—Z [(2v — e tz, — Vil — vl + (21)]6.—

bl ,ca ac al .be
ch)tli - U tlt — U tlt ]
mw ac b at ;bc’ ac  bc’' cc’ .ba ac bc’ be ,ac’
+ Zvcc ij + ZUU tll’ + ZZ 2Uc - U ! )(2tzl t}l’ — b t]l/ — I tl’ - tlt tl’ - tl] Iyi — tllt]t - tlltl] )
w i cc

+v£’c (t;j’t,’?‘ +t;;‘ it “)]. (A3)

i, j, I,and a, b, c refer to occupied and unoccupied orbitals, respectively. The amplitude equations can also be written in a more
compact fashion by defining intermediate quantities.'> Solving Eq. (A3) yields the wave-function coefficients in configuration
space ti“.b and allows for the correlation energy to be calculated according to Eq. (36). Due to the computational cost involved,
CCD has so far only rarely been applied to solid state systems.

Freeman, and Bishop and Liihrmann studied the uniform electron gas using an approximation to CCD theory.’”*’ This
approximation has recently attracted renewed interest and is termed RPA 4+ SOSEX.%%74 RPA + SOSEX differs from CCD
in two points: (i) the HF reference is replaced by the KS reference, which greatly reduces the one-electron gap, and (ii) the
double-amplitude equations are approximated by so-called ring diagrams only:

0= v“b + t“b( + €S — XS Z vl“ft[jb + Zt“c b4 Z tie ”/t,, .

Wec

(A4)

Once obtained, the RPA 4 SOSEX tf’j” amplitudes can be employed to calculate the RPA 4 SOSEX correlation energy using
Eq. (36). A rigorous justification for this approximation is not straightforward and would be beyond the scope of this work.

However, Ref. 75 outlines the connection between the above amplitude and Casida’s equation.
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