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Quantum dynamical screening of the local magnetic moment in Fe-based superconductors
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We have calculated the local magnetic susceptibility of one of the prototypical Fe-based superconductors
(LaFeAsO) by means of the local density approximation + dynamical mean field theory as a function of both
(imaginary) time and real frequencies with and without vertex corrections. Vertex corrections are essential
for obtaining the correct ω dependence, in particular, a pronounced low-energy peak at ω ∼ 0.2 eV, which
constitutes the hallmark of the dynamical screening of a large instantaneous magnetic moment on the Fe atoms.
In experiments, however, except for the case of x-ray absorption spectroscopy, the magnetic moment or the
susceptibility represent typically the average over long time scales. In this respect, the frequency range of typical
neutron experiments would be too limited to directly estimate the magnitude of the short-time moment.
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The discovery of high-temperature superconductivity in
iron-based pnictides1 not only gave new hope for increasing
the critical temperatures towards room temperature, but also
posed new challenges for the understanding of unconventional
superconductors, even regarding the properties of their normal
and magnetic phases. It is generally accepted that conventional
superconductors and also MgB2 are weakly correlated electron
systems, while cuprate superconductors with a magnetic
insulating ground state, characterized by the opening of a
Mott-Hubbard gap, are strongly correlated. In contrast, the
situation in Fe-based superconductors is much less clear. The
phase diagram is strikingly similar to that of cuprates with
an antiferromagnetic parent compound and a superconducting
dome in the doped system. However, a major difference
from the cuprate physics is certainly the metallicity of the
antiferromagnetic spin-density-wave phase and of the low-
doped normal region. Also, the rather good performance of
ab initio (LSDA) calculations to describe2,3 atomic positions
and the symmetry of the long-range magnetic order of many
Fe-based compounds may be interpreted as indicator for the
irrelevance of electronic correlations in these compounds.

In fact, several groups have used weakly correlated the-
ories to model iron-based superconductors. These include
the local (spin) density approximation (LDA, LSDA), and
weak-coupling perturbation theory such as the random phase
approximation (RPA) and the fluctuation exchange (FLEX)
approximation on top of LDA band structures.4–6 The latter
show instabilities towards magnetism and superconductivity
originating from nesting vectors between different Fermi
surface sheets.

A first hint that a weakly correlated picture is, however,
insufficient came from angular-resolved photoemission spec-
troscopy (ARPES) experiments7,8 showing that the LDA band
structure needs to be renormalized by an effective mass en-
hancement of about 2 in LaFeAsO. From the theoretical point
of view, this necessitates the weak-coupling schemes to start
from a correspondingly renormalized LDA band structure.

Such a procedure is particularly cumbersome for a multiband
system such as iron pnictides with five d bands which are
all renormalized somewhat differently and where electronic
correlations also shift the orbitals relative to each other. In this
situation, a true many-body calculation is almost unavoidable,
and indeed several groups have performed such calculations.
In particular, supplementing the LDA by dynamical mean field
theory9,10 (LDA + DMFT) makes it possible to describe well
the one-particle spectrum and renormalization factors.11–19 A
second point indicating that standard band-structure theories
do not work is the ordered magnetic moment, which is for most
compounds much larger in LSDA (≈2μB ) than in experiment
and hardly varies for different Fe-based superconductors, in
contrast to experiment. In fact, the experimental values range
from from 0.3–0.6μB in LaFeAsO (1111 compound) (Refs. 20
and 21) via 0.9μB in BaFe2As2 (122 compound) (Ref. 22) to
2.2μB in FeTe (11 compound).20 It is worth also noting here
that one generally expects the LSDA results to underestimate
(rather than overestimate) the magnetic moments for strongly
correlated electron systems.

Hence, there is evidently a big moment puzzle with theory
predicting large magnetic moments and experiments measur-
ing smaller ones for most of the Fe-pnictide compounds. In
a recent paper,17 we put forward a solution to this puzzle
by considering local spin quantum fluctuations, which are
active also above the magnetic ordering temperature. In
fact, we showed that if one considers the local spin-spin
correlation function of the paramagnetic phase of the Fe-based
superconductors on very short time scales (fs), a relatively
large local moment is observed, i.e., comparable to (or even
larger than) the LSDA prediction of 2μB for the ordered
moment. On longer time scales, however, if the electron
mobility is high enough, this local moment fluctuates very fast
so that the time-averaged magnetic moment is considerably
reduced. Such a strongly screened moment is the one which can
become magnetically ordered at low temperatures, explaining
the reduced size measured in neutron scattering experiments.
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Note that in addition to these temporal (but local in space) spin
fluctuations, at low temperature also nonlocal spatial (e.g.,
antiferromagnetic) spin fluctuations are expected to become
relevant. In this respect, only the latter ones are included in the
framework of an extended Heisenberg model, which has been
recently analyzed in the context of neutron experiments23 for
iron-based superconductors.

From a more theoretical perspective, the origin of the
physics of large, but dynamically screened, local magnetic
moments, as it emerges from our LDA + DMFT calculations,
can be related to the presence of several almost degen-
erate moderately correlated Fe bands at the Fermi level.
This situation enhances the effects of the Hund’s coupling
interaction,24 which mainly controls the formation of the large
local magnetic moment in a still rather itinerant metallic
background, well fitting to the expression “Hund’s metals”
introduced in this context in Ref. 18.

Based on our paramagnetic calculations and the itinerant
nature of the antiferromagnetic phase, we suggested that the
same mechanism not only reduces the local moment on long
time scales in the paramagnetic phase, but also the ordered
moment in the antiferromagnetic phase, corresponding to an
average over long time scales. This was later confirmed by Yin,
Haule, and Kotliar18,25 and, independently, by Misawa, Naka-
mura, and Imada,26 who found a remarkably good agreement
with the aforementioned experimental moments for different
Fe-based superconductors (see also Ref. 27). The observed
material dependence of the ordered magnetic moments comes
likely from the different degree of itinerancy of the several
compounds, which results in a different degree of dynamical
screening of the (almost material-independent) short-time
moment. Note that, in the LDA + DMFT framework, another
explanation for the magnetic moment mismatch has been
recently proposed by Lee et al. in Ref. 28.

In this paper, we not only extend our earlier study17 for
different temperatures and provide more details about our
LDA + DMFT calculation for LaFeAsO, but we also present
our most recent results for the spectral properties of the
(local) spin-correlation functions, aiming to analyze how the
hallmarks of the dynamically screened local moment can be
traced in the existing experimental data.

Specifically, Sec. I describes how we calculate the temporal
magnetic moment fluctuations via the spin-spin correlation
function. In Sec. II, we present results for the temperature
dependence of the spin-spin correlation function. In Sec. III,
we analytically continue the susceptibility to the real frequency
axis and discuss the importance of vertex corrections. Sec-
tion IV is devoted to a detailed comparison and test of the
main result of our theoretical calculations with experiments.
We analyze to what extent experimental findings of x-ray
absorption and neutron scattering spectroscopy are compatible
with the existence of larger magnetic moments on short (fs)
time scales, provided a high-frequency extrapolation of the
experimental data is considered. Finally, we summarize the
main results and our conclusions in Sec. V.

I. METHOD AND MODEL

The most frequently analyzed quantity in LDA + DMFT
studies is the spectral function, i.e., the single-particle Green’s

function A(k,ω) = −1/π Im[G(k,ω + i0+)]. This can be
easily computed in LDA + DMFT and directly compared to
(inverse) photoemission experiments. However, the DMFT
analysis can be also extended, by means of an enhanced
numerical effort, to the calculation of two-particle quantities.
For understanding the dynamics of the local magnetic moment
in the iron pnictides, the quantity of interest is evidently
the local spin-spin correlation function χloc. In fact, the
significant piece of information enclosed in χloc has motivated
many experimental groups to measure or estimate accurately
χloc both in the time and in the frequency regimes: As we
will discuss more extensively in Sec. IV, these experimental
estimates represent an important test for the relevance of
dynamically screened local magnetic moments in the physics
of iron pnictides, as it emerges from our LDA + DMFT
calculations.

In the paramagnetic case, when the spin orientation can be
assumed to be isotropic, the local spin correlation function
reads as

χloc(τ ) =
∑
i,j

χ
i,j

loc (τ ) = g2
∑
i,j

〈
Tτ S

i
z(τ )Sj

z (0)
〉
, (1)

where Si
z(τ ) = 1/2[ni

↑(τ ) − ni
↓(τ )] is the z component of

the spin operator of the orbital i, expressed in terms of the
corresponding density operators ni

σ (τ ) = ci†
σ (τ )ci

σ (τ ) (h̄ = 1).
Note that, in DMFT, we will calculate χloc(τ ) from the
local susceptibility of the converged DMFT impurity model
by means of Hirsch-Fye quantum Monte Carlo.29 Hence, τ

appearing in Eq. (1) represents here the imaginary time. For
τ > 0, we can write explicitly

〈
Si

z(τ )Sj
z (0)

〉 = 1

4

⎡
⎣ ∑

σ=↑,↓

〈
ni

σ (τ )nj
σ (0)

〉 − 〈ni
σ (τ )nj

−σ (0)〉
⎤
⎦ .

(2)

For the noninteracting case or, similarly, for a given quantum
Monte Carlo auxiliary spin configuration29 {s}, this can be
expressed in terms of the Green’s function matrix G

ij

σ {s}(τ,0) =
〈c†i,σ (τ )cj,σ (0)〉{s} as

〈
Si

z(τ )Sj
z (0)

〉 = 1

4

[ ∑
σ=↑,↓

Gii
σ {s}(τ,τ )Gjj

σ {s}(0,0)

−Gii
σ {s}(τ,τ )Gjj

−σ,{s}(0,0) − G
ij

σ {s}(τ,0)Gji

σ {s}(0,τ )

]
. (3)

Let us recall that in the present case we work in a local basis
for which the off-diagonal elements of the Green’s function
matrix in the orbital indices vanish within the PM phase, at
least as far as density-density interaction is considered.

After convergence of the DMFT self-consistent loop,
quantity (3) is measured by means of Monte Carlo sampling.
This procedure represents the most direct way to compute
local two-particle correlation functions within DMFT. In fact,
being (numerically) exact at the level of the impurity model, it
includes automatically all vertex corrections to the bare-bubble
spin susceptibility (see Fig. 1, for the diagrammatic illustration
of χloc), without the need of explicitly calculating the local irre-
ducible vertex function �. The explicit calculation of � would
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FIG. 1. (Color online) Diagrammatically, the local susceptibility
χ computed in DMFT can be expressed in terms of the two (DMFT)
Green’s functions, “bubble” contribution (first diagram on the right-
hand side), plus vertex (�) corrections in a given particle-hole (in our
case, spin) channel.

be only needed in the case wherein one is interested to compute
the momentum- and frequency-dependent spin susceptibility
χ (q,ω) in DMFT.9 While this provides further possibilities for
the comparison with experiments, for multiband systems such
as pnictides, the calculation of χ (q,ω) in DMFT has been so far
possible30 only by introducing additional approximations (e.g.,
neglecting all frequency dependencies of the DMFT vertex
function �).

As a last step before turning to the discussion of our results,
in order to make the comparison with previous or new DMFT
calculations easier, let us briefly illustrate the details of the
low-energy Hamiltonian we employed for our LDA + DMFT
calculations. First of all, the band structure of LaFeAsO
has been obtained with the WIEN2K package,31 adopting
the generalized gradient approximation exchange-correlation
functional introduced by Perdew.32 As a second step, a Wannier
projection on a suitable low-energy basis set of maximally
localized Wannier functions has been performed, using the
WIEN2WANNIER (Ref. 33) and WANNIER90 (Ref. 34) packages.
The choice of the most suitable low-energy basis set for DMFT
represents clearly an important point in the procedure, as
it is intrinsically related to the value of the Hubbard and
Hund’s exchange interactions used in the calculations, and
also to the well-known problem of double counting35,36 in the
LDA + DMFT scheme.

In this respect, let us recall that DMFT calculations
performed for the low-energy model including only the five
3d orbitals of Fe run into severe problems connected to the
different spread of the resulting Wannier functions. Namely,
the difference in the Wannier function spreads renders the
standard recipes to neglect all double-counting corrections
within the d manifold highly questionable. In order to avoid
such problems, an extension of the basis set for the projection
in order taking into account the arsenic and oxygen p degrees
of freedom (resulting in the so-called dpp models) is a
straightforward strategy.

However, when considering the 1111 systems (in our
case, LaFeAsO), there is an alternative possibility for the
construction of a simple low-energy Hamiltonian, restricted to
the d manifold. The additional approximation [first proposed
by one of us (R.A.) and Ikeda in Ref. 6] can be understood
by realizing that in the Fe 3d manifold, there is specifically
one Wannier orbital, namely, 3z2 − r2, whose localization is
much stronger w.r.t. to the other four (xy, x2 − y2, xz, yz).6,17

Hence, the local Coulomb interactions for this orbital would
be different (namely, larger) than for the other ones, making
no longer justified the neglecting of the double-counting
correction terms. Fortunately, in the case of LaFeAsO, the band

mostly connected to the 3z2 − r2 orbital lies below the Fermi
level and does not contribute to the Fermi surface. Hence,
one can assume, in fact, that only the remaining four bands
are contributing significantly to the response functions under
consideration. For this reason, we performed the Wannier
projection on the four remaining Fe 3d orbitals only, i.e.,
xy, x2 − y2, xz, yz. This represents the most consistent
choice with the common assumption of orbital-independent
Hubbard and Hund’s exchange interaction parameters [see
Eq. (4)], and, consequently, with the neglecting of double-
counting corrections for the d-only low-energy Hamiltonian
of LaFeAsO.

After specifying our four-band low-energy model, we
consider a density-density type of multiorbital Hubbard
interaction, which in second quantization reads as

Hint =
4∑

i=1

Uni↑ni↓ +
∑
i �=j

∑
σσ ′

(V − Jδσσ ′)niσ njσ ′ . (4)

Note that we set the orbital rotational symmetry relation V =
U − 2J between the (orbital-independent) Hubbard repulsion
U for two electrons with opposite spin on the same orbital,
the off-diagonal repulsion V between different orbitals i �= j

and the Hund’s coupling J . The latter lowers the energy of
configurations with parallel spins σ = σ ′.

The resulting impurity model, associated with DMFT,
was solved by means of Hirsch-Fye quantum Monte Carlo
(QMC).29 In agreement with our expectation, the spectral
functions and Fermi surfaces obtained from such a four-band
model agree much better with the dpp models than the
five-band d-only model does. Moreover, recently published
data on the spin-spin correlation function obtained with dpp

models36 agree well with our previous results and, hence,
justify the usage of the four-band model also for the two-
particle susceptibilities.

As mentioned also above, the values of the interaction
parameters depend on the specific choice of the low-energy
model. Specifically, the Hund’s coupling J , stemming from
higher-order multipole Coulomb interactions, is more robust
against the model choice than the Hubbard U connected to
the monopole Coulomb term. Calculation by means of the
constrained random phase approximation37 (cRPA) for the
five-band model gives38 an intraorbital Coulomb interaction
U of about 2.2–3.3 eV and a Hund’s rule coupling of about
0.3–0.6 eV. Consequently, we take an average value of
J = 0.45 eV, while we reduce the value of U to 1.8 eV
in order to take into account the screening effects of the
eliminated 3z2 − r2 states and the slightly larger spread of the
Wannier functions (due to the 3z2 − r2 tails).

Let us stress, at the end of this section, that the chosen
values for the local electronic interaction (U = 1.8 eV, V =
U − 2J = 0.9 eV, J = 0.45 eV) yield the experimentally
observed renormalization of the single-particle spectra and
give also results in good agreement with the dpp model.36

Note that, as described in our previous paper (Ref. 17),
performing the LDA + DMFT calculations for an Ising-type
Hund’s exchange [as in Eq. (4)] does not lead in the case of
the 1111 systems (which are characterized by lower values of
the interaction parameters U and J ) to significant errors, not
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only for one-particle spectral functions,14 but also for the local
spin susceptibility (inset of Fig. 2 of Ref. 17).

II. TEMPERATURE DEPENDENCE

In the previous paper, we investigated the dichotomy
between the large instantaneous value of the susceptibility
χloc(τ ) = g2〈TτSz(τ )Sz(0)〉 at τ = 0 and fixed T = 460 K
(β = 25 eV−1), which gives us a direct measure of the “bare”
local moment, and the dynamically screened moment at large
τ , which can be related to the moment measured at longer time
scales. We discussed the orbital composition of the local spin
susceptibility to establish that the interorbital Hund’s coupling
is the key quantity for the observed behavior.

In order to provide further insight to the picture of magnetic
moments driven by local interorbital Hund’s coupling, which
get screened at longer time scales, we study here also the
temperature dependence of χloc(τ ). In Fig. 2, we show
χloc(τ ) for different values of T = 1/β ranging from 387 K
(β = 30 eV−1) to 1160 K (β = 10 eV−1). From these results,
we note a clear saturation of the instantaneous spin-spin
correlation function with decreasing temperature to a value
more than twice as large as the corresponding noninteracting
one. This means that at τ = 0 a significant local moment
is actually formed and it persists at low temperatures. The
dynamically screened value at τ = β/2, on the other hand,
decreases evidently upon lowering the temperature. This is
consistent with what one expects in a metallic system, i.e., for
a Fermi liquid. Here, at long enough time scales, a complete
screening takes place at low T as a consequence of the strong
fluctuations of the local magnetic moment induced by the high
electronic mobility [for instance, in the limiting cases of a
noninteracting system or of a Fermi liquid at T = 0, one finds
χ (τ = β/2) = 0].

Among the various members of the iron-based supercon-
ductors, the 1111 family is one of the most itinerant ones,
therefore the dynamical screening is quite effective. As a
consequence, the difference between the instantaneous and
the moment at τ = β/2 is large and the dynamical screening
will be effective at shorter time scales.

FIG. 2. (Color online) Temperature dependence of the
LDA + DMFT local spin susceptibility as a function of the imaginary
time τ . Inset: Temperature dependence of the local static magnetic
susceptibility χloc(ω = 0), obtained via a τ integration.

Moreover, the different temperature dependence of
χloc(τ = 0) and χloc(τ = β/2) shown in Fig. 2 is also
reflected in the behavior of the local static susceptibility
χloc(ω = 0). In fact, our LDA + DMFT results for χloc(ω =
0) = ∫ β

0 dτ χloc(τ ), reported in the inset of Fig. 2, are very
weakly dependent on T : we observe essentially a strongly
renormalized Pauli behavior. Hence, despite the presence of
a large instantaneous magnetic moment, as far as the static
moment is concerned, we are very far from the Curie behavior
[χloc(ω = 0) �= const × 1

T
], which would require, instead, that

χloc(τ = 0) and χloc(τ = β/2) were almost the same (i.e., a
screening time scale going to ∞). A Curie type of behavior is
indeed what one obtains for compounds with a higher degree
of correlation and localization. For those, because of the poorer
metallic screening, a less rapid τ decay of χloc(τ ) is found and
the static susceptibility becomes more Curie type.

This is likely the reason why the ordered magnetic moment
calculated by means of LSDA for some of the most correlated
ones (e.g., FeTe) is, strangely enough, in better agreement
with experiments than for the less correlated ones. In fact,
LSDA is a static theory. This means that, even if it can not
reliably describe strongly correlated materials, it may work
“effectively” better for those compounds in which the poor
screening flattens the χloc(τ ), i.e., where it becomes less τ

dependent.
Let us note here, for the sake of completeness, that the

crossover between Curie-type and (renormalized) Pauli-type
local spin susceptibility has been nicely illustrated by Haule
et al.24 upon varying the Hund’s coupling J for a fixed
LDA input. For small values of J (close to that of the 1111
compounds), χloc(τ ) is quite constant in T as in our case, which
agrees with the 11-band (dpp) calculation for LaFeAsO of
Ref. 36. In contrast, for larger values of J , the screening of the
moments gets less effective, and this results in a pronounced
1/T dependence. The Hund’s coupling J is a crucial parameter
in driving between these different regimes, in agreement with
what has been already put forward by Yang et al. in the
context of an x-ray absorption data study.39 In a more general
context, Werner et al.40 and, afterward, de’ Medici et al.41

emphasized that the Hund’s coupling is a key parameter for
tuning correlation effects in multiband systems, with important
differences observed depending on the (integer) filling of the
systems.40,41

III. FREQUENCY DEPENDENCE

The calculation of the frequency dependence of the local
magnetic spin susceptibility represents an important step
forward to relate the “Hund’s metal” scenario24,25 described
above with the physics actually observed in iron-based super-
conductors. In fact, in most of the experiments (among others
neutron experiments, see next section), spectral functions
(and not time-dependent functions) are measured. At the
same time, in LDA + DMFT the analytic continuation of
the local susceptibility χloc(τ ) can be obtained by means of
the maximum entropy method42 (MEM) directly from the
two-particle Green’s functions of the Anderson impurity model
associated with the DMFT, namely, from the τ -dependent local
magnetic spin susceptibility data, as discussed in the previous
section. In comparison with the analytic continuation of the
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standard one-particle spectral functions, the numerical effort
for accumulating high-enough QMC statistics for the MEM
is quite larger. Furthermore, the stability of the analytically
continued results has been tested by employing different
models for the MEM, including also a completely featureless
one (constant distribution).

We start our analysis by considering a rough approximate
expression for Imχloc(ω), which is easily obtained by ne-
glecting all vertex corrections (� = 0), i.e., by considering
only the term with the convolution of two LDA + DMFT
retarded Green’s functions GR(ω) (the so-called “bubble” term
in Fig. 1). This approximation, which is well justified for the
evaluation of the optical conductivity at the LDA + DMFT
level,9,43–45 is expected not to work well for the case of spin and
charge susceptibility. We discuss first, however, the “bubble”
results because often such easy approximation is taken in the
theoretical calculations. This preliminary analysis will be also
useful in the following for evaluating separately the effects of
the vertex corrections in a situation of practical interest, as for
the iron pnictides.

The spectrum of the local magnetic susceptibility
Imχloc(ω), computed by considering the “bubble” term only,
is given by

Im χloc(ω) = g2π

2

∫
dω′A(ω′)A(ω′ + ω)[f (ω′) − f (ω′ + ω)],

(5)

where A(ω) = − 1
π

ImGR(ω) is the local (k-integrated) spectral
function obtained by performing the MEM analytic con-
tinuation of the local LDA + DMFT Green’s function, and
f (x) = 1/(eβx + 1) is the Fermi-Dirac distribution function.

The LDA + DMFT results for Imχloc(ω) of LaFeAsO at
β = 25 eV−1 are shown in Fig. 3 (left panel). The sum of the
contributions from all four Fe d-Wannier orbitals is shown in
the main panel. In the inset, it can be seen that the orbital
dependence is weak. At the level of the “bubble” term, the
spectrum of the local magnetic susceptibility appears almost
featureless, with a unique large maximum, located at ∼2−3 eV
for all orbitals. This has to be related to the fact that (at least)
two important energy scales, i.e., the LDA bandwidths and the
local Coulomb interaction in Hint [Eq. (4)] are (roughly) of
this order of magnitude.

We turn now to evaluate the effects of the inclusion of
the vertex corrections in the LDA + DMFT calculations. This
corresponds to apply the MEM directly to the two-particle
local spin susceptibility χloc(τ ) as a function of imaginary
time, without resorting to any expression such as Eq. (5) in
terms of the single-particle Green’s function GR(ω) only. The
results of the (bosonic) MEM for χloc(τ ) are shown in Fig. 3
(right panel), where the sum of all 4 diagonal contributions
(blue line), as well as the total sum of all (16) diagonal
and off-diagonal terms (solid thick gray line) are reported.
From a comparison of the total intensity of Imχloc(ω) with
the bare-“bubble” data of Fig. 3 (left panel) immediately
emerges the important role played by the vertex corrections.
They indeed determine the appearance of a well-defined peak
structure in the spectral functions. Specifically, by looking
at the total intensity of Fig. 3, we note a marked low-energy

peak, located at ω ∼ 0.2 eV, while a second (but much broader)
spectral structure is found at larger frequencies.

From the physical point of view, we can look at the
development of the low-energy peak as the fingerprint of
a local moment formation. Such local moment is, however,
dynamically screened, as it is witnessed by the relatively
visible spectral features at higher frequencies, and above all by
the position of the peak itself, at ωpeak ∼ 150−200 meV. We
can better understand this argument by considering a Fourier
analysis of Imχ (ω), i.e., its behavior for real times. The peak
of Imχ (ω) can be directly related to temporal fluctuations of
the local spin on the Fe atoms with a characteristic frequency
∼ωpeak. These correspond, evidently, to an “effective” decay
of the local spin moment, when averaging over times larger
than the typical fluctuating period, the size of which can be
estimated (tfluct ∼ 1

ωpeak
) to be of order of ∼10 femtoseconds

(fs). Note that this is larger than the typical time scales (tel) of
about 1 fs characterizing the electron dynamics in LaFeAsO,
i.e., tel ∼ 1

ZW
(where W ∼ 4 eV is the electronic bandwidth,

and Z ∼ 0.5 the quasiparticle renormalization factor), which
clearly indicates the relevance of the local magnetic moment
formation even in the most metallic family (1111) of the iron
pncitides. At the same time, in contrast to the more correlated
case of metals in the proximity of a transition to a Mott
insulating phase (where ωpeak → 0), the local spin fluctuations
in LaFeAsO occur much faster than the typical time scales of
significant experimental probes, such as in the case of neutron
spectroscopy (see next section for quantitative details of the
comparison with experiments).

A second important characteristic sign in Imχ (ω) is the
importance of the contribution of the off-diagonal terms in
the spin-correlation matrix, which is reflected in the difference
between the total and the diagonal parts of the Imχloc(ω).
The significant off-diagonal contribution, which stems entirely
from vertex correction effects, can be easily connected with
the predominant role of the Hund’s exchange interaction in
this system.

Finally, as for the diagonal terms, it is also interesting to
disentangle our LDA + DMFT data for the local magnetic
susceptibility with respect to the four different Fe d orbitals of
our model. Contrary to the case of the “bubble” approximation
(inset of the left panel of Fig. 3), the spectra (with vertex
corrections included) show visible differences among the
different orbitals (inset of the right panel of Fig. 3). In
particular, one notes that the first peak structure at low energy
is much more pronounced for the x2 − y2 orbital, i.e., for that
whose Wannier function lives most in the plane and whose
lobes point in the direction of the ligand As atoms. One also
notes the presence of a second peak at energies slightly smaller
than the second maximum in the total (diagonal) spectrum.
On the other hand, we note that in the case of the xy orbital
(which also lives mainly in the plane, but whose lobes point
in the direction of the neighboring Fe atoms), the first peak is
considerably weakened. There also appears to be a small shift
in frequencies, which might, however, be an artifact stemming
from different peak heights, since a combined screening of
all orbitals would suggest the first peak to be at the same
position. The intensity of the second maximum is also slightly
weakened, and the missing spectral weight appears to be
shifted towards higher frequency, where a third maximum
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FIG. 3. (Color online) Left panel: Frequency dependence of the imaginary part of the local spin susceptibility calculated in LDA + DMFT
for LaFaAsO at β = 25 eV−1 without vertex corrections [“bare-bubble” term, see Eq. (5)]; inset: orbital resolved contributions to Imχloc(ω)
(note that only the diagonal terms are shown, as the nondiagonal are identically zero for the bare “bubble”). Right panel: Frequency dependence
of the imaginary part of the local spin susceptibility calculated in LDA + DMFT with all vertex corrections included; in blue are shown the
sum of all 4 diagonal terms, while the sum of all (16) terms is plotted in gray; inset: orbitally resolved plot of the diagonal terms of Imχloc(ω)
after the inclusion of vertex corrections.

appears (at ω ∼ 1.7−1.8 eV). The situation for the degenerate
xz, yz orbitals is, instead, something in-between those of
the two planar orbitals, with the exception of the position of
the first peak, which appears moving (very slightly) towards
lower energies. The emergence of a stronger low-energy peak
for the x2 − y2 orbital appears connected to the value of the
orbital occupations, which are, respectively, nxz = nyz = 1.06,
nx2−y2 = 0.98, and nxy = 0.90. In fact, the x2 − y2 orbital is
the “closest” to the half-filling (n = 1) condition, and, hence,
one expects more evident effects of strong correlations (among
which is the formation of a stronger local magnetic moment).

The evaluation of the vertex correction effects on the
LDA + DMFT local magnetic susceptibility allows not only
for a more precise description of the physics characterizing
the different orbitals and of the most-relevant off-diagonal
contributions, but it also represents a necessary step for
performing a more quantitative comparison with experiments.
In fact, the question of how our theoretical data really compare
with spectroscopic experiments in the paramagnetic phase will
be addressed extensively in the next section.

IV. COMPARISON WITH EXPERIMENT

A major outcome of our LDA + DMFT calculation is the
formation of a large instantaneous (t = 0) local moment,
mainly driven by the Hund’s exchange interaction J among
the four almost degenerate Fe-3d Wannier orbitals at the
Fermi level (Sec. II). However, as the (imaginary) time and
frequency dependence (Sec. III) of the LDA + DMFT local
spin susceptibility shows, in the case of LaFeAsO such large
local moment is efficiently screened over large time scales by
dynamical fluctuations. When comparing our LDA + DMFT
results with experiments performed in the paramagnetic phase
of the Fe-based superconductors, hence, the focus should be
on (i) the magnitude of the local magnetic moment at t = 0
and (ii) its dynamical screening over long time scales.

As for (i), one can extract from our LDA + DMFT χ (τ =
0) value quantitative estimates for the instantaneous local
magnetic moment mloc,t=0, and for the “effective” magnitude
of the total spin Seff of the Fe sites. Specifically, after having
extrapolated our LDA + DMFT data down to T = 200 K,
and assuming a perfect spin isotropy for the paramagnetic
(PM) phase, we find mloc,t=0 = g

√
〈S2

x 〉 + 〈S2
y〉 + 〈S2

z 〉 
√
3χloc(τ = 0) 
 3.68μB , which would correspond [m =

g
√

Seff(Seff + 1)] to an “effective” spin configuration Seff ∼
1.4 for each Fe atom. Note that Ising and Heisen-
berg Hund’s exchange yield a similar 〈S2

z 〉 in the itiner-
ant regime of LaFeAsO,17 albeit of course not in more
strongly coupled materials. Such estimates are similar
to those (mloc,t=0 
 3.4μB,Seff = 1.3) obtained in recent
LDA + DMFT calculations36 for an 11-band dpp model of
LaFeAsO. Even higher values for the local magnetic moment
were extracted by previous LDA + DMFT calculations (Seff =
1.8),12 which assume a much larger U and J value than that
estimated by cRPA for LaFeAsO. From the experimental point
of view, the detection of a local and instantaneous magnetic
moment of the Fe atoms would evidently require a very fast
experimental probe, as, e.g., x-ray absorption spectroscopy
(XAS). In fact, XAS measurements of Fe L2,3 edge by Kroll
et al.46 for LaFeAsO have been fitted by multiplet cluster
calculations, suggesting a high-spin ground state (i.e., Seff = 2
even larger than the LDA + DMFT predictions).

It is important, however, to test experimentally also the
second main aspect of our LDA + DMFT results, i.e., the
dynamical screening of such large local magnetic moments
over longer time scales. This is possible by inelastic neu-
tron spectroscopy. In fact, neutron experiments have been
performed for T > TN , e.g., in the case of CaFe2As2 (at
T = 220 K > TN = 172 K) (Ref. 47) and (optimally doped)
Ba(Fe1−xCo)2As2.48

Inelastic neutron spectroscopy is typically recasted in terms
of a q- and ω-dependent dynamical structure factor, and
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this, in turn, can be related to the corresponding q- and ω-
dependent magnetic susceptibility. Although the crystal-field
(CF) splitting of iron pnictides (e.g., CF ∼200–300 meV) is
usually much lower than the typical values of 1–2 eV of other
3d transition-metal compounds, in the post processing of the
neutron experimental data for the Fe pnictides the assumption
of a complete quenching of the orbital moment is usually done.
Hence, the dynamical structure factor is directly related to the
imaginary part of the (reduced)49 magnetic spin susceptibility,
i.e., to its spectral function Imχ (q,ω).

In our case, we are interested in verifying the presence of
local magnetic moments. Hence, a Fourier transform to real
space, i.e., an integral over the momenta q is necessary. While
neutron scattering data for CaFe2As2 and Ba(Fe1−xCo)2As2

have been taken only for a given set of q values, these data have
been used for extracting the remaining part of the q dependence
of Imχ (q,ω) via a fitting procedure,47,48,50 which made it
possible to perform the Brillouin zone (BZ) q integration.
On the other hand, the dynamical screening predicted by our
LDA + DMFT calculations is detectable only over a short time
scale. This essentially requires an integral over all frequencies,
i.e., a cutoff 
C → ∞ in

m2
loc,t=0 = 3

π
lim


c→∞

∫ 
c

−
C

∫
BZ Im χ (q,ω) b(ω) dq dω∫

BZ dq

= 3

π
lim


c→∞

∫ 
c

−
C

Imχloc(ω) b(ω)dω. (6)

Here, b(x) = 1/(eβx − 1) is the Bose-Einstein distribution
function, and the coefficient 3 comes (as mentioned also
above) from the sum over the three spin components (〈S2〉 =
〈S2

x 〉 + 〈S2
y 〉 + 〈S2

z 〉 in the PM phase, where we can consider
the system to be magnetically isotropic).

The most problematic step is the frequency integral since,
e.g., in the case of CaFe2As2, the spin spectral functions have
been measured only up 
C ∼ 60–80 meV. One can try to
extrapolate the data to higher frequencies: We consider here
explicitly the values obtained47,50 for a cutoff 
C = 100 meV,
i.e., not too far away from the experimental window.

With such a cutoff, the corresponding experimental estimate
for mloc(t = 0) in CaFe2As2 obtained via Eq. (6) (with an extra
factor 1

2 for obtaining the squared moment per Fe atom47)
was mloc,t=0 ∼ 0.5μB (to be compared with 0.95μB for the
ordered moment in the same compound51). Notice that similar
value for mloc,t=0 and, namely, 0.4μB–0.8μB have been also
estimated for BaFe2As2 (Refs. 48 and 52) (for the optimally
doped compound or in the ordered case, respectively).

At first glance, hence, one would conclude that the size
of the local and instantaneous moment in CaFe2As2 is
significantly smaller than that predicted by the LDA + DMFT
calculations (note that for the 122 family, even larger values for
mloc,t=0 than for LaFeAsO are found18). However, one should
keep in mind that the LDA + DMFT τ = 0 value corresponds
to 
C = ∞ in Eq. (6).

In order to understand to what extent the observed dis-
crepancy might originate from such a cutoff “mismatch”
between theory (
C = +∞) and experiment (after a data
extrapolation47,50 up to 
C = 100 meV), we can now analyze
further the frequency dependence of the local spin suscepti-
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FIG. 4. (Color online) Cutoff dependence of the frequency
integral of Eq. (6) for the local (r = 0) and instantaneous (t = 0) mag-
netic moment calculated from the LDA + DMFT spin susceptibility
with (blue line: diagonal terms only; dark gray line: total) and without
(light blue line) vertex corrections (i.e., just the bare-bubble contri-
bution). The most important contribution to the frequency integral
comes from the energy region ω > 100 meV, i.e., from higher energies
than the typical ones of the neutron experiments performed for the
Fe-based superconductors. If considering a (rounded) typical cutoff
of 100 meV (vertical red dashed line), it is evident that the estimate
of Eq. (6) for the local and instantaneous magnetic moment is much
smaller (at least three times) than its “correct” asymptotic value.

bility, which was discussed in the previous section. From the
bare-bubble contribution to the spin susceptibility (Fig. 3, left
panel), it is clear that the major contribution to the integrated
spectral weight comes from frequencies larger than 1 eV.
Including vertex corrections (Fig. 3, right panel) yields a richer
spectral structure with a prominent peak at about ω ∼ 0.2 eV.
Our theoretical prediction of such a peak is not only consistent
with the increase of q-integrated experimental neutron spectral
function for CaFe2As2 and Ba(Fe1−xCox)2As2 (reported in
Ref. 48), but has also been very recently confirmed by novel
neutron measurements54 in an extended energy range.

In any case, the spectral weight lying below the experi-
mental cutoff represents just a small fraction of its total value,
even the main features of the LDA + DMFT spectral function
are located beyond the experimental cutoff. Hence, we have
plotted in Fig. 4 the value of the frequency integral over
the LDA + DMFT data up to a cutoff 
C : the experimental
cutoff 
C = 100 meV yields only 10% to 15% of the
instantaneous squared local moment Eq. (6). If assuming that
also for CaFe2As2 only such a fraction of the moment has
been integrated up to 
C = 100 meV, we get an estimate
of mloc,t=0 ∼ 1.5μB as the true magnetic moment. This
represents of course only a rough estimate, significantly larger
than the neutron spectroscopic values at about 
C = 100 meV
but still smaller than the LDA + DMFT/XAS predictions. The
remaing discrepancy might be partly originated by the lack of
SU(2) symmetry of the interaction terms we assumed in Eq. (4)
or, more likely, by the effects of spatial correlations neglected
by DMFT, which, at present, can not be easily included via
the cluster55 or diagrammatic extensions56,57 of DMFT in
complicate systems such as the Fe-based superconductors.
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V. SUMMARY AND CONCLUSION

In this paper, we studied by means of LDA + DMFT
the local magnetic properties of iron-based superconductors
focusing, in particular, on the 1111 systems (LaFeAsO)
for which a small ordered magnetic moment (0.3–0.6μB )
is experimentally observed. We have constructed by the
Wannier-interpolation technique33,34 an effective low-energy
model, which contains the dxy , dx2−y2 , and dyz/zx orbital
degrees of freedom, and supplemented it with local interactions
U = 1.8 eV and J = 0.45 eV. These interaction values are
motivated from constrained random phase approximation
(cRPA) calculations and reproduce analogous results for the
spectral function of the dpp model:14,53 The system presents an
intermediate value of the quasiparticle renormalization factor
∼2 induced by electronic correlations, in agreement to the
results of the ARPES experiments.

In order to clarify the physics of local magnetic moments
and their dynamical screening as well as to make contact
with the experiments, we have analyzed the local magnetic
spin susceptibility within the framework of LDA + DMFT
and looked into the detail of its temperature and frequency
dependencies. As for the former, we found the formation of
considerably strong local (r = 0) and instantaneous (t = 0)
magnetic moments, which is mainly driven by interorbital
Hund’s coupling J , and whose magnitude decays rapidly in
imaginary time. More specifically, the characteristic features
of such “Hund’s metal” physics are as follows: (i) The
instantaneously (short-time) local magnetic moment, which
corresponds to the square root of the local spin correlation
function χloc(t = 0), shows a saturation with decreasing
temperature. (ii) The dynamically screened value at long times
(τ = β/2), on the other hand, decreases upon lowering the
temperature, as a consequence of the still relatively good
metallic properties of the system. (iii) The local magnetic
susceptibility at ω = 0, which is the average (integration) over

all τ ’s, shows a (strongly renormalized) Pauli-type behavior in
agreement with Ref. 36. For larger J values, a crossover to a
Curie-type susceptibility is found.24

A clear hallmark of the physics of the dynamical screening
of the large local instantaneous magnetic moments has been
individuated in the magnetic spectral function, namely, in
the q-integrated spin susceptibility Imχ (ω). In fact, when the
vertex corrections are properly included, the total spin suscep-
tibility calculated in LDA + DMFT diplays a characteristic,
very pronounced peak around ω ∼ 0.2 eV.

When comparing our results to experiments, we note that
the existence of a large (spin) magnetic moment on the Fe
atoms is supported by x-ray absorption spectroscopy data for
LaFeAsO.46 The comparison with the neutron spectroscopy
data is more difficult: According to the LDA + DMFT calcu-
lations, about 90% of the magnetic spectral weight lies above
the typical experimental frequency window ∼60–80 meV. This
is compatible with the observed experimental increase of the
q-integrated Imχloc(ω) throughout the measured frequency
range, as well as with the peak structure of the local spin
susceptibility in one of the most recent neutron experiments,54

and yields a crude estimate for the instantaneous magnetic
moment of at least ∼1.5μB from the neutron data.
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