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Simulating rare switching events of magnetic nanostructures with forward flux sampling
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Predicting the thermal stability of magnetic storage devices is an important and challenging task. Here,
we demonstrate how the forward flux sampling method (FFS) can be used to determine the thermal stability of
magnets with general microstructures for time scales ranging from picoseconds to years. To apply FFS to magnetic
systems, we first use the nudged elastic band (NEB) method to determine a minimum energy path connecting the
initial with the final state of the magnetic transition. Interfaces defined based on this minimum energy path then
provide the basis for the FFS procedure in which dynamical trajectories are generated by integrating a stochastic
version of the fundamental equation of motion of the magnetization (Landau-Lifshitz-Gilbert equation) at finite
temperature. This approach allows to determine average lifetimes for incoherent reversal processes and it can be
applied for any value of the damping constant. We validate the method for a single-grain particle by comparison
with the results of direct Langevin simulations carried out and demonstrate its capabilities and efficiency by
computing the lifetime of a graded media grain, a magnetic structure with a tailored magnetocrystalline spatial
anisotropy profile.
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I. INTRODUCTION

The prediction of the thermal stability of magnetic struc-
tures is important for numerous technological applications
ranging from the design of magnetic recording structures and
spin torque devices to the thermal decay of bulk permanent
magnets.1,2 A detailed knowledge of thermally activated
reversal processes in magnetic structures is also crucial for
the understanding of coercivity as function of temperature
and sweep rates.3 On a phenomenological level, thermal
stability of magnetic states was successfully described using
the Néel-Brown model. Within this framework, which relies
on transition state theory, the rate constant kAB quantifying
the thermal stability of a magnetic state is calculated using the
famous Arrhenius-Néel law

kAB = τ−1
0 e−�Ebar/kBT , (1)

where �Ebar denotes the lowest energy barrier separating
the initial (meta)stable state from other long-lived states. The
characteristic time τ0 depends on the dynamics of the system
and may be viewed as an attempt time related to the attempt
frequency, f0 = τ−1

0 . Based on this expression, lifetimes of
magnetic states were calculated for magnetic particles that
reverse via coherent rotation both for overdamped dynamics4,5

as well as in the small damping limit.5–9 Ensembles of
single-domain particles that are weakly coupled can be well
described by Monte Carlo methods.10

While the thermally activated switching of single-domain
particles has been studied exhaustively as documented in
the literature,11 there exists less work on the reversal of
inhomogeneous magnetic structures. The thermal activation
of domain walls was treated analytically for nanowires by

Braun,12 for soft/hard nanowires by Loxely et al.13 and for
nanowires with graded anisotropy by Visscher et al.14 For more
complicated structures, however, the activation energy cannot
be computed analytically and one has to rely on numerical
methods to determine the rate constant according to Eq. (1).
Such a numerical computation can be performed in two steps.
First, one determines the energy barrier �Ebar separating
the long-lived states, for instance, using the nudged elastic
band method (NEB) or the string method.15–18 Then, one
computes the prefactor f0, a calculation that is numerically
very challenging and has been performed only recently for
arbitrary magnetic microstructures.19

Another strategy to calculate the thermal stability of mag-
netic nanostructures relies on the integration of the stochastic
version of the Landau-Lifshitz-Gilbert equation. Such simu-
lations, however, are restricted to several nanoseconds since
small time steps are required to resolve the precessional
motion.20,21 Simulations of this type can be extended to longer
times using temperature accelerated dynamics,22,23 which
exploits the larger rate constant at higher temperatures but
reproduces the correct low-temperature behavior under the
assumption that transition state theory holds. If this method is
applied to the calculation of the switching rate of structures that
are stable on the time scale of years, however, temperatures
well above the Curie temperature are required to obtain the
necessary acceleration. While such high temperatures pose
no difficulty for single-domain particles, this approach fails
for spin systems that are discretized in order to resolve domain
walls. Also the bounce algorithm, in which the system is forced
to stay in the high energy regions of configuration space, works
best for single-domain particles.24
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In this paper, we apply the forward flux sampling
method,25,26 originally developed for the simulation of rare
events in biochemical networks, to the simulation of switching
processes in magnetic microstructures. This method, which
has been successfully applied to study a variety of rare events
ranging from crystal nucleation to protein folding, is based
on a staging procedure that selectively generates transition
pathways without the necessity to simulate the system during
the long waiting time between the transitions. In contrast
to other path-based rare event simulation methods such as
transition path sampling,27–29 forward flux sampling does
not require knowledge of the stationary phase space density,
such that it can be easily applied to nonequilibrium systems.
This feature makes the forward flux sampling methods also
particularly suitable for the simulation of rare magnetic
switching events in nonequilibrium situations, for instance, in
the presence of time varying external fields. Here, we use this
approach to determine lifetimes of advanced recording media,
demonstrating that a small coercivity field can be combined
with high thermal stability.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the equations of motion for the dynamics
of micromagnetic structures driven by thermal fluctuations
and briefly describe the forward flux sampling method for the
calculation of rate constants. In Sec. III, a simple micromag-
netic model is used to illustrate the calculation of the thermal
stability of a magnetic particle by means of a combination
of the nudged elastic band (NEB) method with forward flux
sampling (FFS). The benefits concerning the computational
cost of the presented FFS strategy in comparison to direct
stochastic simulations are also discussed. In Sec. IV, the
switching rate constant of a realistic graded media grain is
computed and the transition path of the magnetization reversal
is analyzed. Finally, the computational advantages of using
the FFS method to determine average lifetimes of magnetic
particles are summarized in Sec. V.

II. METHODS

A. Magnetization dynamics

The magnetization dynamics of a magnetic particle at finite
temperature can be described with the stochastic version of the
Landau-Lifshitz-Gilbert (LLG) equation,

dm̂
dt

= − |γ |
(1 + α2)

{m̂ × (Heff + H th)}

− α|γ |
(1 + α2)

{m̂ × [m̂ × (Heff + H th)]}. (2)

Here, m̂ is the magnetization of the magnetic particle normal-
ized by the saturation magnetization MS, γ is the reduced elec-
tron gyromagnetic ratio (|γ | = |γe μ0| = 2.213 × 105 m/As),
and α is the damping parameter. The effective magnetic field
can be calculated as the functional derivative of the total energy
with respect to the magnetization,

Heff = − 1

μ0MS

δEtot

δm̂
. (3)

The thermal field H th is an uncorrelated Gaussian random
variable with zero mean and a variance following from the

fluctuation-dissipation theorem,〈
Hth,i(t,r)Hth,j (t ′,r ′)

〉 = 2Dδij δ(r − r ′)δ(t − t ′). (4)

The total energy of the magnetic system is the sum of four
contributions,

Etot = Eexc + Eani + Edemag + EZee

= J S2c

a

∫
[(∇mx)2 + (∇my)2 + (∇mz)

2]dV

+
∫

K1[1 − (êeasy · m̂)2]dV

− μ0MS

2

∫
m̂ · HdemagdV − μ0MS

∫
m̂ · HextdV.

(5)

The first term, Eexc, is the exchange energy, which arises from
the exchange interactions between the magnetic moments.
If only nearest-neighbor interactions are taken into account,
the exchange integrals J can be assumed as constant. In this
simplification, a is the lattice constant and c = 1, 2, and 4 for a
simple cubic, bcc, and fcc lattice, respectively. The anisotropy
energy Eani originates from the crystal structure of the particle,
which gives the magnetic moments a preferred direction. Such
directions are called “easy directions” and are described by
the unit vector êeasy. The constant K1 in the second term is
the anisotropy constant of the material. The third term, Edemag,
represents the demagnetization energy, which arises because
the demagnetization field Hdemag of a magnetized structure
tries to reduce its total magnetic moment by forming magnetic
domains. The last term, the Zeeman energy EZee, comes from
the interaction of the magnetic moments of the system with an
external magnetic field Hext.

After rearranging Eq. (2), a system of Langevin equations
with multiplicative noise results:20,30

dm̂i

dt
= −Ai (m̂,t) + Bik (m̂,t) Hth,k (t) . (6)

The explicit expressions for Ai (m̂,t) and Bik (m̂,t) are the
same as in Ref. 30. Using a typical finite-element approach,30

these equations can only be solved in the nanosecond time
regime such that switching processes occurring on time scales
of up to years are clearly out of reach of such simulations.
However, while such switching events, which determine the
thermal stability of magnetic systems, are rare, they proceed
rapidly once they are initiated through a rare but important
fluctuation. This fact is exploited in forward flux sampling,
which concentrates on dynamical trajectories that include the
switching event as described in the next section.

B. Forward flux sampling

The forward flux sampling (FFS) method25 is a computa-
tional method for calculating rate constants of rare events, both
in equilibrium and nonequilibrium systems. In this method,
one considers rare transitions between long-lived states A and
B, defined as regions in configuration space using an appropri-
ate criterion. In between the states A and B, one then arranges
a sequence of nonoverlapping interfaces defined as isosurfaces
of an order parameter, λ(x) = λi , as illustrated schematically
in Fig. 1. The value of the order parameter has to increase at
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FIG. 1. (Color online) Schematic illustration of the stable states
A and B and the interfaces λi that partition the configuration space
between A and B into adjacent regions. In the first stage of a forward
flux sampling simulation, one runs a trajectory starting in stable state
A. Each time the trajectory exits region A and successively crosses
interface λ0, the system configuration is stored, as indicated by the
crosses along λ0.

each subsequent interface in comparison to the previous one,
λi+1 > λi . Furthermore, the interfaces need to be defined such
that a trajectory evolving from A to B crosses each interface
at least once. Multiple recrossings of an interface are allowed.

Based on this setup, the rate kAB for transitions from A to
B can be computed from the following expression:

kAB = �A,0

n−1∏
i=0

P (λi+1 | λi) . (7)

The first factor on the right-hand side of the equation, �A,0,
is the rate at which trajectories coming from region A cross
interface λ0. The product following �A,0 is the probability that
a trajectory crossing interface λ0 reaches the final region B

rather than returning to A first. Since this probability is small, it
is written as a product of conditional probabilities that are eas-
ier to calculate. In Eq. (7), P (λi+1 | λi) denotes the probability
that a trajectory that has crossed interface λi will cross interface
λi+1 before returning to A. The rate kAB is the escape rate of
the system for leaving the metastable state A and ending up
in the metastable state B. The relaxation rate kR = kAB + kBA

is the sum of the escape rate kAB and the corresponding
escape rate kBA of the reversed transition from state B to
state A. All examples in this work are symmetric in the sense
that both escape rates are the same, because transitions from
A to B and vice versa are equally probable. In this case, the
relaxation rate kR is simply twice the escape rate, kR = 2kAB .
If the free energy of state A is not equal to the energy of state
B, both escapes rates have to be determined with independent
FFS simulations. In the FFS method, the factors appearing in
Eq. (7) are computed as explained in the following.

First, a Langevin simulation is carried out in the stable
state A (see Fig. 1). Each time the Langevin trajectory exits
region A and successively crosses interface λ0 the system
configuration is stored. This initial simulation ends after a
given number N0 of crossings is stored. Then, one of these
sampled configurations is selected at random and serves as
starting point for a new Langevin simulation (see Fig. 2).
This simulation is terminated after the system either reaches
the next interface, λ1, or returns to region A by crossing

A B

λA λ0 λ1 λ2 λ3 λn−1 λn=B

FIG. 2. (Color online) FFS algorithm: M0 Langevin simulations
are started from randomly chosen (previously stored) configurations
at λ0. Each simulation is terminated when the trajectory crosses the
next interface, λ1, or returns to A. This procedure is repeated at each
interface until λn is reached.

λA. If λ1 has been reached, the system configuration at the
crossing point is again stored. To collect a set of configurations
at interface λ1, this procedure is repeated M0 times. From
these configurations, new Langevin trajectories are started and
propagated until they cross the next interface λ2 or return to
A (not just to the previous interface!). For the subsequent
interfaces, one proceeds analogously. The whole procedure
terminates successfully if at least one trajectory reaches the
stable state B (crosses λn), or it terminates unsuccessfully if
all trajectories coming from one of the interfaces return to A.
In the first case, a rare switching event has occurred, in the
second case, the choice of the interfaces has to be improved.

From the stored number of trajectories and the number of
interface crossings, the rate constant of the rare switching event
is calculated using Eq. (7). The first factor on the right-hand
side of Eq. (7), �A,0, is estimated as the number of stored
configurations at interface λ0 divided by the total time of the
Langevin simulation in region A. The transition probabilities
P (λi+1 | λi) appearing in the product are computed as the
number of trajectories that cross interface λi+1 divided
by the total number of trajectories started at interface λi .
Multiplication of these factors finally yields the transition rate
constant kAB .

The most important and also the most challenging part of
an FFS simulation is the suitable definition of the interfaces
between the two stable states. If the interfaces are not chosen
appropriately, no single trajectory will reach the final state B

within the given simulation time and the FFS method will not
yield any result. Here, we propose to place the interfaces along
the minimum energy path of the magnetization reversal process
obtained using the nudged elastic band (NEB) method,15–17 as
described in detail in Sec. III A. It has to be pointed out that
the FFS algorithm is completely independent from the method
used for placing the interfaces. Although the NEB method
uses high damping to find energy minima and saddle points,
the FFS method includes all dynamical effects of the system.
The NEB method is just one, very efficient, way to arrange
the interfaces between A and B. In principle, the results of
forward flux sampling do not depend on the particular choice
of the interfaces. However, not suitably chosen interfaces lead
to a very poor efficiency of the method.
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To quantify the accuracy of the FFS method, Allen et al.
have derived analytical expressions for the statistical error
affecting the transition rate constant.31,32 To simplify the
notation in the following, we define pi ≡ P (λi+1 | λi) and
qi ≡ 1 − pi as well as ki ≡ Mi/N0 (ratio of the number of trial
runs starting at interface λi and the number of configurations
stored at λ0). The relative variance of the transition rate
constant is then given by

V =
n−1∑
i=0

qi

piki

[
1∏i−1

j=0

(
1 − q

Mj

j

)
]

≈
n−1∑
i=0

qi

piki

. (8)

To determine V , one assumes that the trajectories initiated
at different interfaces are statistically independent from each
other and that the variance of the transition rate constant
originates only from the transition probabilities P (λi+1 | λi)
rather than from the flux of trajectories out of the initial
state A. This assumption usually holds for an appropriate
definition of region A and sufficiently long simulation times.
For a detailed derivation of Eq. (8), we refer the reader to
Refs. 31 and 32. Borrero and Escobedo have demonstrated
how to use the expression of Eq. (8) to optimize the efficiency
of FFS-simulations either by a strategic placement of the
interfaces or an asymmetric distribution of the computing
effort on the interfaces.33

III. ILLUSTRATIVE MODEL

To demonstrate the application of the FFS approach to
magnetic systems, we computed the average lifetime of a
single-macrospin particle with dimensions of 1 nm × 1 nm ×
1 nm, which is described with one single spin. The particle has
an anisotropy constant of K1 = 3 MJ/m3, a saturation polar-
ization of μ0MS = 0.5 T and its easy axis is pointing in the z

direction. In addition, a homogeneous external magnetic field
is applied along the negative y direction, which we will call
the perpendicular external field in the following. The magnetic
dynamics of such a particle is fully specified by the vector
magnetization m̂(t) on the surface of the unit sphere in three
dimensions as a function of time t . Different field strengths
are used and the temperature of the Langevin simulation is
adapted to get a constant exponent of the Arrhenius-Néel law
�Ebar = 9kBT for each field strength. There are three reasons
for using this simple superparamagnetic single-spin model.
(1) For the parameters considered here, the magnetization
reversal process can be monitored in one single direct Langevin
simulation of length 104 ns. In this case, it is possible to
count the number of switches directly and from this number
the thermal stability of the system (quantified by the average
lifetime) can be computed. The results obtained in this way
provide the basis to test the FFS approach. (2) Kalmykov
gives an analytical formula4 to compute the thermal stability
of single-macrospin particles under the influence of arbitrary
homogeneous magnetic fields, which offers another possibility
of comparison. (3) The model is very instructive because the
magnetic configurations of such a particle can be visualized
as normalized vectors moving on the unit sphere. Such a
visualization is not possible with analogous hypervectors of
a full micromagnetic model.
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FIG. 3. (Color online) FFS interface definition for the single-
macrospin model with a perpendicular external magnetic field applied
in the negative y direction. (a) Minimum energy path of magnetization
reversal from m̂A to m̂B . (b) Euclidean norm definition of the stable
states A and B. (c) Definition of the interfaces λ0 to λn−1 with
hyperplanes. (d) Final hybrid interface definition.

A. Interface definition

In the first step of the FFS procedure, the minimum energy
path of the magnetization reversal is determined. Since our
goal is to simulate a reversal from the magnetization-down
to the magnetization-up state, the NEB calculation is carried
out for start and end configurations with magnetizations in
the −z and +z directions, respectively. The NEB procedure
then yields the minimum energy configurations [m̂A and m̂B

in Fig. 3(a)] as well as intermediate configurations along
the minimum energy path [m̂i in Fig. 3(a)]. Note that the
magnetization in the energy minima is not pointing in the
z direction because of the perpendicular external applied
magnetic field in the −y direction.

In the next step, the interfaces λA and λB of the stable
states A and B around the energy minima need to be properly
defined. We define A and B by requiring that the deviation
of the magnetization from the magnetization of the respective
minimum energy configuration is smaller than a given value,

|m̂ − m̂A,B | < λA,B, (9)

where the vertical bars denote the Euclidean norm. It is im-
portant to choose the stable states A and B sufficiently narrow.
Otherwise it may happen that a magnetization trajectory, which
is only precessing around m̂B with a small opening angle,
but which indeed returns to m̂A afterwards, is counted as a
magnetic reversal trajectory (because it crossed the border
interface λB). Such trajectories are known as “U turns”. In case
of superparamagnetic particles, they are frequently occurring
error sources. If they are not correctly recognized, the rate
constants are clearly overestimated. To obtain the correct rate
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FIG. 4. (Color online) Grain stability of the illustrative model
plotted against the Euclidean norm threshold λA,B used to define the
stable states A and B. A perpendicular external magnetic field with
strength of 40% of the anisotropy field is applied. In the marked area,
the evaluated grain stability is independent of the threshold value.
Thus it represents the “real” stability, which is not affected by “U
turns.”

constant, it has to be ensured that kAB is independent from the
chosen value of λA,B , for decreasing Euclidean norm thresh-
old. This means that the rate constant should not change if the
energy minimum definition is made even stricter. Simulations
with too large λA,B result in an overestimation of the rate
constant, because “U turns” are counted as magnetization
reversals. This behavior is demonstrated in Fig. 4 for the
illustrative model with a perpendicular external applied field
with a strength of 40% of the anisotropy field. It follows for
all presented calculations, the definitions of the stable states
A and B, and thus the criteria for magnetization reversals, are
suitable to guarantee that the system stays in a minimum, if its
magnetization falls below λA,B , until a new rare event takes
place. This holds for arbitrary damping of the system.

For the interfaces 0 to n − 1, a different definition is used.
As shown in Fig. 3(c), first, the vector to the previous magnetic
configuration along the minimum energy path is calculated,

ni = m̂i − m̂i−1. (10)

Interface i is then defined as the plane (or hyperplane if a full
micromagnetic model is used) that passes through m̂i and is
normal to ni . Note that in the string method, the interfaces
are also defined as hyperplanes normal to the string.16 To
decide whether an interface has been crossed, the position of
the current magnetization m̂(t) vector relative to the hyper-
plane has to be determined. This can be done by computing
the scalar product

ni · [m̂(t) − m̂i] (11)

and checking its sign at each time step. The final interface
definition is shown in Fig. 3(d). In summary, stable states
A and B are defined with the Euclidean distance to the
minimum energy configurations. In between, hyperplanes are
arranged along the minimum energy path. Note that there
are only planes from region A up to the transition state of
the magnetization reversal transition, because the probability
of a trajectory starting from a hyperplane near the transition
state to reach region B is sufficiently high. As a consequence,
additional interfaces are not necessary and would only add to

the computational cost without improving the accuracy of the
calculation. With this interface definition the FFS method can
be applied as described in the next section.

B. Results

As mentioned in Sec. III, we select the temperature such
that the energy barrier �Ebar = 9kBT , which is sufficiently
small to observe several magnetization reversals in a single
direct Langevin simulation of length 104 ns. To detect a
switch between the stable states, the magnetization trajectory
is followed on the surface of the unit sphere. The stable
magnetic states are defined with the same Euclidean norm
approach as used in the FFS approach (see Sec. III A) and a
threshold value of 0.5 for the distance from the energy minima
is taken. In the FFS method, the stable states A and B are
defined by the requirement that the Euclidean distance from
the energy minima is less than 0.45. With these definitions the
resulting rate constants are independent from the Euclidean
norm threshold in both methods, as shown in Fig. 4. The
rate constants thus arise purely from “real” magnetization
reversals, which means that switched trajectories stay in their
energy minima until a new rare switching event occurs. For
both simulation methods, a damping parameter of α = 0.02 is
used.

Thermal stabilities (quantified by average lifetimes) ob-
tained from the direct simulations for perpendicular external
fields of 0%–40% of the anisotropy field are shown in Fig. 5 as
dashed blue line. For each field strength, five Langevin simula-
tions of 104 ns were carried out. The red solid line in Fig. 5 is the
thermal stability calculated with the FFS method. Mean values
of five simulations and the corresponding standard deviations
are plotted. An optimization of the interface positions was
performed for each field strength, such that the flux of partial
trajectories through all interfaces is nearly constant.33
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AAnalytical FormulaDDirect Langevin FFS

FIG. 5. (Color online) Thermal grain stability quantified by the
average lifetime of the magnetic state for perpendicular homogeneous
external magnetic fields with different field strengths. The FFS results
(red solid line) and the direct Langevin simulation results (blue
dashed line) are averages over five simulations. All simulations were
performed with a damping constant of α = 0.02. The error bars
indicate the standard deviation of the attempt frequency (σS) based on
repeated simulations with a certainty interval of 68.3%. The analytical
behavior derived in Ref. 4 for the considered single-macrospin
particle is shown as green dotted line. The analytically calculated
value at zero field, according to Ref. 34, is shown by a black star.
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TABLE I. FFS simulation results for perpendicular external fields with a strength of 0%–40% of the anisotropy field. The crossing
probabilities p̄0 to p̄3, the average lifetime τ̄ , the prefactor (attempt frequency) f̄0, and the relative variance V̄ of f̄0 are average values over
five separate simulations. σS is the standard deviation of f̄0 based on repeated FFS simulations and σV is estimated from the relative variance
of the prefactor according to Eq. (12).

Hext
Hani

p̄0 p̄1 p̄2 p̄3 τ̄ (ns) f̄0 (GHz) V̄ σV (GHz) σS (GHz)

0.0 0.27 0.29 0.30 0.31 102.43 80.26 0.51 5.75 10.70
0.1 0.33 0.30 0.33 0.33 62.04 132.50 0.44 8.80 17.72
0.2 0.34 0.38 0.32 0.33 59.98 140.21 0.41 8.98 31.66
0.3 0.31 0.31 0.28 0.32 53.80 156.28 0.48 10.80 31.81
0.4 0.29 0.33 0.30 0.32 56.99 144.05 0.47 9.84 17.96

The results of these simulations are listed in Table I.
The crossing probabilities p̄i , average lifetimes τ̄ , prefactors
(attempt frequencies) f̄0, and the relative variances V̄ of
f̄0 shown in the table are averages over five independent
FFS simulations. The statistical error of the prefactor, σV , is
estimated from the relative variance V of the transition rate
constant,

σV =
√
Vf 2

0

N0
, (12)

where N0 is the number of stored configurations at interface
λ0. If the simulation results of the direct Langevin and the FFS
simulations are compared, it can be seen that the two methods
yield results that are identical up to the statistical errors.
The green dotted line shows the thermal stability predicted
by transition state theory (TST) as derived analytically by
Kalmykov4 for single-macrospin particles. In the case of
perpendicular external fields, the TST prediction is only valid
for Hext � 0.04Hani. Figure 5 shows that the simulation results
are also in a good agreement with Kamlmykov’s analytical
expression. At zero field, there exists an analytical expression
of Brown,34 which also agrees with the prediction of the FFS
method within its statistical error limit (see Fig. 5).

In the following, we compare the computational effort re-
quired by the FFS method and by direct Langevin simulations
to determine thermal stabilities of the discussed single-spin
model. In all simulations, a damping parameter of α = 0.02 is
used and a perpendicular external magnetic field with strength
of 10% of the anisotropy field is applied. In direct Langevin
simulations, a sufficient number of spontaneous switches of the
magnetization has to be collected in order to ensure statistically
significant results. Therefore the computational cost of direct
Langevin simulations increases exponentially with increasing
energy barrier as indicated in Fig. 6. Thus direct Langevin
simulations for the calculation of thermal stabilities are only
effective if the energetic barrier is not much larger than the
thermal energy kBT . The FFS approach, however, is not
affected by this restriction, but can deal with arbitrarily high
energetic barriers and, therefore, with very large lifetimes of
magnetic states.

Table II shows the parameters and the results of the
FFS simulations for different energy barriers. For each
barrier �Ebar/kBT , five independent FFS simulations were
performed. Figure 7 illustrates that the FFS results again agree
well with the analytical formula of Ref. 4. The dependence
of the required CPU hours with respect to the energy barrier

(see Fig. 6) can be explained as follows. For increasing energy
barrier, additional interfaces have to be inserted between the
two stable states A and B to ensure that the crossing proba-
bilities from one interface to the next remain approximately
constant. The single Langevin trajectories used to compute
the crossing probabilities have almost the same length for all
energy barriers, they even get a bit shorter for increasing barrier
heights, because the relaxation of the magnetization in the two
energy minima is faster. As a consequence, the total simulation
time increases almost linearly with the number of interfaces.
An additional increase in CPU time is due to the larger
number of trajectories generated at each interface (higher ki)
needed to keep the relative statistical variance V constant (if
pi remains constant). The results shown in Fig. 6 imply that
the total simulation times required by the two methods are
only comparable for the simple illustrative model discussed in
Sec. III B. For a magnetic grain with a more realistic energy
barrier, it is not possible to determine the thermal stability
with direct Langevin simulations, but with the FFS approach
a calculation with good accuracy can be performed in about
55 CPU hours. One point which should be mentioned is that
in Tables I and II, the standard deviations of the repeated
simulations σS are significantly larger than the corresponding
standard deviations σV , which can be calculated from a single

1
2 3 9 12 22 25 36 55
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5.7x10102
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1.9x10109

2.8x10101111

4.1x10101313

6.1x10101515

9.0x10101717

1010-1-1

10101
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10105

10107
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10101111

10101313

10101515

101017

0 5 10 15 20 25 30 35 40 45

FIG. 6. (Color online) Total simulation times on a single-core ma-
chine for single-macrospin particles with different energy barriers (the
exact CPU times are shown in the data labels). The simulation parame-
ters are the same as those used to obtain the results shown in Fig. 5. For
the direct simulation, the required CPU time increases exponentially
with increasing energy barrier �Ebar (blue dashed line extrapolated
from simulation with �Ebar = 9kBT ). For the FFS method, the total
simulation time increases linearly with the number of interfaces and
the number of trajectories per interface (red solid line).
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TABLE II. Computational setup (number of interfaces ninterfaces, range of average crossing probabilities p̄i) and results of FFS simulations
(attempt frequency f̄0, relative variance V , standard deviations σS, σV , and total simulation times in CPU hours) for different energy barriers
�Ebar/kBT of the illustrative model of Sec. III. A perpendicular external magnetic field with strength of 10% of the anisotropy field is applied.
These are the FFS results of Fig. 6 in detail. Quantities with an overbar denote average values of five independent FFS simulations.

�Ebar/kBT ninterfaces p̄i (min–max) f̄0 (GHz) σV (GHz) σS (GHz) CPU (h)

9 4 0.30–0.33 132.50 8.80 17.72 1
14 7 0.24–0.33 152.43 10.57 40.01 2
19 10 0.23–0.27 171.29 15.08 32.25 3
24 13 0.19–0.29 228.36 16.70 46.13 9
29 16 0.18–0.29 278.26 23.08 77.10 12
34 19 0.21–0.26 288.75 21.48 121.69 22
39 22 0.20–0.27 310.62 25.52 131.27 25
44 25 0.16–0.28 403.41 35.35 112.41 36
49 27 0.17–0.25 305.89 25.40 121.15 55

FFS simulation according to Eqs. (8) and (12). A small
mismatch can be explained by the fact that σV just accounts
for statistical errors in the transition probabilities P (λi+1 | λi)
between the FFS interfaces. The prefactor �A,0 in Eq. (7)
is supposed to be exact, which is not completely true in our
simulations. There are still small deviations of �A,0 between
the repeated simulations. But these deviations are too small to
explain the gap between σS and σV . To reveal the true nature of
this discrepancy, further investigations have to be performed.

IV. GRADED MEDIA GRAIN

To reveal the full power of the FFS method, we have used it
to simulate the thermal reversal process of a full micromagnetic
graded media grain. The grain model is a 20-nm-long prism
with a pentagonal basal plane (outer radius of 2.1 nm)
studied at a temperature of 300 K. As given in Ref. 35,
the minimum switching field is obtained for a quadratic
increase of the anisotropy profile. According to Ref. 35,

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50 55

FFS

FIG. 7. (Color online) Attempt frequencies [prefactors of Eq. (1)]
of the illustrative single-macrospin model for different energy barriers
�Ebar/kBT . A perpendicular external magnetic field with strength of
10% of the anisotropy field is applied. The FFS results (red solid line)
are averages of five independent simulations and the error bars show
the standard deviations σS of these repetitions (68.3% certainty). All
detailed results can be found in Table II. The analytically derived
values according to Ref. 4 (green dotted line) agree well with the FFS
results. For better visualization, the attempt frequency instead of the
grain stability is shown in this plot, because the grain stability varies
over several magnitudes due to the different energy barriers.

the grain is partitioned into eight different materials with
such a quadratically increasing anisotropy profile K1(z) =
z21.24 × 1022 J/m5 [see Fig. 8(a)]. The magnetic polarization
μ0MS = 0.5 T and the exchange constant A = 10−11 J/m are
the same in all parts of the grain. A finite element mesh size
of 2 nm and a damping parameter of α = 0.02 are used for
the micromagnetic simulations. The spatial discretization of
the model consists of 62 nodes, 167 volume elements, and 125
surface elements. Since the grain has a uniaxial anisotropy
pointing along the z axis, we compute the attempt frequency of
the thermal magnetization reversal from a magnetization-down
to a magnetization-up state. After calculating the minimal
energy path of the rotation with the NEB method, 29 interfaces
(λ0 to λn=28) between the two stable states A (magnetization-
down) and B (magnetization-up) are defined for the FFS
algorithm. The positions of the interfaces are optimized,
according to the procedure described in Ref. 33, such that
the flux of partial trajectories through the interfaces is almost
constant (15% � pi � 22%).

Selected configurations along one of the transition paths
obtained from the FFS simulation, which required a total of
12 600 CPU hours, are shown in Fig. 8. The beginning of the
magnetization reversal can be seen in Fig. 8(a), which displays
a magnetic configuration observed at the first interface, λ0. In
the lower, magnetically soft part of the grain, the magnetic
moments start to precess around the easy axis. As the reversal
process goes on, the rotating moments move upwards on the
grain and a domain wall forms, which is clearly developed
at interface λ6 as shown in Fig. 8(b). Figures 8(c) and 8(d)
show the domain wall moving from the magnetically softer
parts of the grain to the magnetically harder parts. Finally,
the system reaches the last interface λB [a configuration from
this interface is shown in Fig. 8(e)] and the magnetization
reversal is completed. Combining the flux out of region A

with the crossing probabilities for all interfaces yields a
thermal stability of τ = 1417 years. With the energy barrier
�Ebar = 53.32 kBT300 determined in the NEB method, this
thermal stability corresponds to the attempt frequency f0 =
3215.21 GHz according to Eq. (1). The relative statistical
variance of the attempt frequency obtained using Eq. (8) is
V = 0.28, yielding a standard deviation of σV = 212.67 GHz
according to Eq. (12). If a certainty interval of 3 σV (99.7%
certainty) is used, the average particle lifetime is at least
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(a)

3.8 MJ/m

(b) (c) (d) (e)

0.0 MJ/m

K1

FIG. 8. (Color online) Magnetic configurations along a thermal
magnetization reversal path of a graded media grain with quadrat-
ically increasing anisotropy. The basal plane of the model is a
pentagon with an outer radius of 2.1 nm. (a) The color code shows the
eight different materials of the grain and the magnetization vectors
show a magnetic configuration at interface λ0. (b)–(e) Magnetic
configurations at interfaces λ6 (b), λ16 (c), λ25 (d), and λB (e).
The color code illustrates the z component of the total normalized
magnetization.

1135 years. This is obviously a thermally stable grain, although
the presented particle has a significantly smaller diameter than
grains of single phase recording media. The variance and thus
the standard deviation of the transition rate can be decreased
if the number of trial runs started at each interface is increased
while the number of configurations stored at interface λ0

remains constant (ki increases), or if additional interfaces are
inserted (pi increases). Since trajectories started at different

interfaces should be uncorrelated to optimize efficiency, ki

should be increased first.

V. CONCLUSION

In conclusion, we have demonstrated that the thermal
stability of magnetic particles can be predicted accurately and
efficiently with the forward flux sampling method. To apply
FFS, we have divided the configuration space between the two
stable magnetic states using interfaces defined as hyperplanes
normal to the minimum energy path of the magnetization
reversal. The resulting thermal stabilities are in good agree-
ment with direct Langevin simulations of single-macrospin
particles with a low-energy barrier. The total simulation time
for calculating the thermal stability of magnetic particles,
however, is significantly lower if the FFS method is used. To
illustrate the potential of FFS, we simulated the magnetization
reversal of a graded media grain with realistic dimensions. Our
results validate the concept of graded media, which combines
a reduced coercivity with a thermal stability still sufficiently
large even for diameters much smaller than those of single
phase recording grains.
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