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Quantum confinement in perovskite oxide heterostructures:
Tight binding instead of a nearly free electron picture
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Most recently, orbital-selective quantum well states of d electrons have been observed in SrVO3 ultrathin films
and SrTiO3 surfaces. We construct from first-principles simple tight-binding models for such perovskite oxide
heterostructures and surfaces. We show that this model provides a simple intuitive physical picture and yields,
already with only two parameters, quantitatively reliable results, consistent with experiment. For quantum wells
confined to only a few atomic layers or a higher quantum number, a nearly free electron description, on the other
hand, does not work.
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I. INTRODUCTION

Thanks to recent progress of epitaxial growth techniques,
perovskite oxide heterostructures can now be made and
controlled at atomic scales so that d electrons are confined
within a region of a few unit cells (∼1 nm) in the z direction of
the epitaxial growth.1–3 As a result of the confinement, many
novel physical phenomena occur.4–20 Very recently, quantum
well states have been convincingly observed experimentally
by means of angle-resolved photoemission spectroscopy for
two distinct oxide heterostructures: (i) SrVO3 (SVO) ultrathin
films,4 where electrons are geometrically confined inside the
film, and (ii) SrTiO3 (STO) surfaces5 (which can be considered
as an STO/vacuum heterostructure), where electrons are
confined in a two-dimension (2D) surface potential well.2

In both cases, very similar orbital-selective quantum well
states are observed: d electrons with yz/xz orbital characters
exhibit a large quantization of the energy levels, whereas xy

electrons exhibit a much smaller level spacing. This behavior
has been ascribed to a nearly free electron (NFE) model in the
literature.4,5

The NFE model is widely used in semiconductor het-
erostructures as well as for simple metal thin films.21,22 Elec-
trons are regarded to move almost freely with an energy versus
momentum (�k) dispersion relation h̄2k2

2m∗ in terms of the effective
mass m∗. The confinement in the z direction is described by a
potential well V (z) of a characteristic length of 10 nm. Such a
simple model with only two variables m∗ and V (z) works
perfectly for semiconductor heterostructures. However, its
applicability to oxide heterostructures is questionable because
it is well known that d electrons are much more localized
than the s,p electrons in semiconductor heterostructures. In a
perovskite oxide, an electron is tightly bound to a transition
metal ion site and moves in the crystal structure by hopping
from one site to a neighboring site. One might therefore
expect that a tight-binding (TB) model will give a much
better description of oxide heterostructures than the NFE
model. While some first steps have been undertaken, see, e.g.,
Refs. 11,12, and 23–25, a systematic comparison between TB
and NFE models for oxide heterostructures is hitherto missing.
Similarly, there has not been a systematic investigation of how
many TB parameters are needed for an accurate description.

Hence it is unclear at present how complicated or simple the
TB description actually is for such heterostructures.

In this paper, we do first-principles density functional
theory (DFT) calculations and construct from these, TB
models for describing the quantum well states in perovskite
oxide heterostructures and surfaces. We further simplify our
models to an effective hopping term t and a local potential term
ε, instead of m∗ and V (z) for the NFE model. We show that for
thin SVO films, the geometrical confinement is described by
cutting the hopping term from surface layer to vacuum. The
quantized energies are 2t cos( πn

N+1 ), where N is the thickness
of the film and n is a quantum number, ranging from 1 to N . In
contrast, the NFE model yields h̄2π2n2

2m∗N2a2 , where a is the lattice
constant of bulk SVO. Moreover, we study the potential well
confinement at STO surfaces or LaAlO3/SrTiO3 (LAO/STO)
heterostructures. Here, we need to include a layer-i dependent
potential εi in our model. For a realistic potential well, we
find that the lowest quantized yz/xz state is on the verge of
becoming a surface bound state. Hence its spatial distribution
can be easily tuned by a gate voltage or an electric field.
Our results show that the TB approach, instead of the NFE
approach, is the natural basis for modeling heterostructures of
transition metal oxides. Our simple TB model can serve as a
starting point for follow-up studies such as advanced transport
or many-body effects.

II. DFT RESULTS

Bulk SVO (see Fig. 1) is a nonmagnetic correlated metal
with perfect cubic perovskite structure of space symmetry
group 221 Pm-3m. When studying its thin-film growth along
the (001) direction, we usually regard it as an alternating
stacking of SrO and VO2 layers. In this paper, we study
symmetric SVO thin films containing N layers of VO2 and
N + 1 layers of SrO so that the surfaces are SrO terminated,
see Fig. 2. We employ a sufficiently thick vacuum of 10 Å
for the supercell calculation and vary the thickness N one
to ten SVO unit cells. We fix the in-plane lattice constant
to the calculated equilibrium bulk value aSVO = 3.86 Å, and
optimize the internal coordinates. The DFT calculations are
performed using the all-electron full potential augmented
plane-wave method in the WIEN2K26 implementation, with a
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FIG. 1. (Color online) (a) Schematic figure of V sites in bulk SVO
and V 3d yz orbitals with lobes expanding in the y-z plane. Sr and
O atoms are omitted here. (b) SVO band structure calculated by DFT
(black dotted lines) and compared to the t2g TB Hamiltonian (1) (red
solid lines). Along X-�, a red dashed line indicates a fit to a cosine
function, and the blue one a fit to a parabolic function.

generalized gradient approximation (GGA)27 potential and
10×10×1 k-point grid. Our calculations reveal that the surface
oxygen atoms relax outward by 0.06 Å, while the Sr atoms
relax inward by 0.12 Å; the relaxation of other atoms is
negligible. We note that including STO as a substrate or
making a SVO/STO superlattice will not change our main
conclusion. A VO2 terminated surface instead of a SrO one
on the other hand is rather different as this breaks the VO6

octahedral crystal field of bulk SVO.

A. Bulk SVO

Bulk SVO has a d1 electronic configuration with one
electron in the three vanadium t2g states (xy, yz, xz). The
yz orbital is schematically shown in Fig. 1(a). This orbital
predominantly expands in the y-z plane, and a pair of its lobes

FIG. 2. (Color online) Band structure of a six layers SVO thin
film calculated by DFT (black dotted lines) and the TB Hamiltonian
(red solid lines). The confinement in the z direction leads to quantized
energies levels, which are indicated by arrows for the yz/xz orbitals
at �. Inset: atomic structure of the SVO thin film.

points to a corresponding pair of lobes from the yz orbital
at nearest-neighbor sites in the y and z directions. The other
two orbitals, i.e., xy and xz, have the same character and
are related by cubic symmetry. Figure 1(b) shows these t2g

bands as calculated by DFT along high-symmetry k lines. At
�, three bands are degenerate. Along �-X(π/a,0,0), the yz

band has a much smaller energy dispersion of only 0.12 eV,
whereas the two xy/xz are degenerate in this direction and
have a much larger energy dispersion of 1.9 eV. Around �, we
fit the DFT bands by a parabolic energy dispersion of nearly
free electron h̄2k2

2m∗ as shown in Fig. 1(b), and obtain in the
x-direction effective masses m∗ = 0.56me for the xy/xz bands
and m∗ = 8.4me for the yz band, where me is the free electron
mass. Considering cubic symmetry, we see that carriers with yz

characters are light in the y and z directions, but heavy in the x

direction. At higher energies, e.g., towards X point, the energy
dispersion of the t2g bands follows, however, a cosine function,
instead of a parabolic function of NFE, see Fig. 1(b). Since
this high-energy part does contribute to the quantized energies
in heterostructures, the applicability of the NFE model for
describing SVO thin films becomes questionable.

B. SVO thin films

For SVO thin films with N VO2 layers, electrons can move
freely in the xy plane, whereas they are confined by the film in
the z direction. Hence, instead of a dispersion in the z direction,
we obtain N quantized levels for each orbital and in-plane
k point. The DFT calculated band structure for N = 6 layers
is plotted in Fig. 2 along high-symmety in-plane k points.
In total, 3×6 t2g bands are located between −1.0 to 1.5 eV.
Analyzing the symmetry of the bands as well as projecting
on each orbital and site, we are able to identify the character
of all bands. When going from SVO bulk to thin films, the
translation symmetry along the z direction is broken, whereas
the in-plane translational and rotational symmetry remains.
Therefore the initial triply degenerate states at � split into an
xy state and a doubly degenerate yz/xz state.

At �, the lowest band is of purely surface V xy character,
followed by the xy orbitals of the second and third layers. The
surface xy band is 0.16 eV lower than the other xy bands,
which are all close in energy. Such a band splitting arises
from a local potential drop of the surface layer, as revealed
by the Wannier projection discussed below in Table II. Here,
we see that the dispersion of all xy bands is similar to that
of bulk. This is because xy orbitals expand mainly in-plane,
and the confinement along the z direction has hence little
influence. Turning to the yz/xz orbitals, we note that yz has a
small and xz a large energy-momentum dispersion along �-X,
i.e., in the x direction. Of course, the behavior is opposite
in the y direction, and the two orbitals are degenerate at �.
In contrast to the xy bands, the two yz/xz orbitals exhibit a
pronounced energy subband structure: six discrete energies are
separated by an energy level spacing of about 300 meV. This
is because the yz/xz orbitals expand in the z direction. Along
this direction, their energy dispersion is large and hence the
confinement along z leads to a pronounced energy quantization
if the electrons are confined in a thin film. Projecting the yz/xz

states onto each site (not shown) reveals that all quantized
yz/xz states do not belong to a single layer but, indeed, spread

125401-2



QUANTUM CONFINEMENT IN PEROVSKITE OXIDE . . . PHYSICAL REVIEW B 88, 125401 (2013)

FIG. 3. (Color online) Quantized energies of the quantum well
states of the V yz orbitals as a function of SVO film thickness
N at the � point. Results with quantum numbers n = 1–4 are
shown in black, red, blue, and green, respectively. Experimental
results (unfilled symbols) are taken from Ref. 4; DFT results with
a renormalization factor Z = 1.8 (filled symbols) are extracted from
the band structures of SVO thin films with different thickness N , in
the same way as shown in Fig. 2 for N = 6. The NFE models give
ε + 2t + h̄2π2n2

2m∗N2a2 (dashed lines), and the TB model ε + 2t cos( πn

N+1 )

[Eq. (4) solid lines]. Here, m∗ = − h̄2

2a2 t
= 0.53me and, respectively,

t = −0.475eV, ε = −0.01eV are estimated from the DFT, which
yields consistent results in the limit of N � n.

throughout the thin film. Hence in contrast to the xy bands,
each yz subband is a superposition of yz orbitals from all
layers.

The subband energy structure of the yz orbitals at �

(arrows in Fig. 2) has been experimentally observed in angular-
resolved photoemission spectroscopy (ARPES).4 Figure 3
shows the comparison of experiment and theory for varying
film thickness N . To account for correlation effects beyond
DFT, we have renormalized the DFT band structure by a
factor of 1/Z with a renormalization factor Z = 1.8 taken
from bulk SVO.28–30 Clearly, there is a good agreement
of theory and experiment regarding the magnitude and the
general behavior of the quantized energy levels. We note that a
metal-to-insulator transition occurs for SVO ultrathin film with
N � 2,31 and hence the picture of renormalized quasiparticle
fails in that region.

Considering the good agreement between DFT and exper-
imental results, we now try to extract a simple model based
on the DFT results, for describing the quantum confinement.
In an NFE model, the geometrical confinement of SVO thin
films is approximated by an infinite potential well, where the
wave function at the boundary is hence zero. Such a boundary
condition results in quantized energy levels with energies
h̄2π2n2

2m∗N2a2 at the � point. As shown in Fig. 3, at low n and thick
films N , the NFE model gives consistent results with the DFT
calculations. However, at larger n and for thin films, i.e., small
values of N , the discrepancy between the NFE model and DFT
calculations becomes apparent. This is expected since, in bulk

TABLE I. Hopping integral tαβ ( �R) in the maximally localized
Wannier basis for bulk SVO between orbital α at site 0 and orbital β

at site �R. �R = (0,0,0) indicates the local energy term; �R = (0,0,1)
and �R = (0,0,2) are the nearest and next-nearest neighbor along the
z direction, respectively. All values are in units of eV.

tαβ ( �R) �R = (0,0,0) (0,0,1) (0,0,2) (0,1,1)

xy,xy 0.579 −0.026 0.000 0.005
yz,yz 0.579 −0.259 0.007 −0.082
xz,xz 0.579 −0.259 0.007 0.005
xy,yz 0 0 0.000 0.009

SVO, the NFE model gives parabolic energy dispersion h̄2k2

2m∗ ,
which is only valid for a small momentum k. At larger k, the
discrepancy between NFE (parabola) and TB model (cosine
function) increases dramatically, as is shown in Fig. 1(b) for
the bulk. For the same reason, the NFE model fails especially
when the quantized energy is high (i.e., n is large and N is
small), which explains the large difference in Fig. 3 between
DFT and NFE models for such values of n or N . In contrast,
the energy dispersion of the TB model is in good agreement
with DFT for small and large momentum k, see Fig. 1(b). We
therefore expect a TB model to reliably describe the quantum
well states.

III. TIGHT-BINDING (TB) HAMILTONIAN

A. First-principles based TB model for bulk SVO

In this paper, we take maximally localized Wannier orbitals
for constructing a realistic TB Hamiltonian. The TB Hamilto-
nian has matrix elements

Hαβ(�k) =
∑

�R
tαβ( �R)ei�k �R , (1)

where �R denotes lattice sites, α and β denote orbitals in
the Wannier basis, tαβ( �R) represents a hopping integral from
orbital α at site 0 to orbital β at site �R, and �k is the wave vector.
The Wannier projection on DFT calculated V t2g Bloch waves
was performed with the WIEN2WANNIER package,32 employing
WANNIER9033 for constructing maximally localized Wannier
orbitals.

For bulk SVO, we have a unit cell with a single V site and
obtain three Wannier orbitals which are essentially t2g orbitals,
but slightly hybridized with O2p orbitals.6,30 For simplicity,
we still denote these Wannier orbitals by α,β = xy,yz,xz.
All the orbitals are well localized with a localization function
(variance) � = 1.89 Å2 (defined in Ref. 33). For the following,
we introduce the notation �R = (lx,ly,lz) = lx �ex + ly �ey + lz�ez,
where �ex , �ey , and �ez are lattice vectors along x, y, and z

directions, respectively, and lx , ly , and lz are integer numbers.
Through the Wannier projection, we obtain all hopping

terms and construct a TB Hamiltonian according to Eq. (1),
which exactly reproduces the DFT calculated t2g bands as
shown in Fig. 1(b). All the major hopping terms are listed
in Table I. The �R = (0,0,0) terms represent the local crystal
field energies, which is the same for the three orbitals due to
cubic symmetry (often denoted as ε) and zero for interorbital
elements such as txy yz. For �R = (0,0,1), the interorbital
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hopping term is zero due to symmetry, see positive (red) and
negative (blue) lobes in Fig. 1(a). The intraorbital hopping
term for yz and xz orbitals is large (−0.259 eV) because these
orbitals expand in the z direction, while it is small (−0.026 eV)
for the xy orbital, which does not expand.

B. Simplified TB model for bulk SVO

Analyzing all hopping terms tαβ( �R), we identify two basic
characteristic features: (i) all the interorbital hopping terms are
zero or negligibly small, i.e., for �R = (0,0,1) or (0,0,0), they
are exactly zero and for �R = (1,1,0) and (0,0,2), they are tiny
(0.009 eV or even less), see Table I. As a result, the interorbital
hopping process can be ignored to a very good approximation;
all three orbitals are decoupled and can be treated separately.
(ii) Along any specific direction, the next-nearest-neighbor
hopping term (with |lz| � 2) is generally small. Hence the
nearest-neighbor hopping already yields a good description
for bulk SVO.

For each orbital α along a given orientation such as z, the
Hamiltonian (1) is then reduced to

Hα(kz) = εα + 2tα cos kza, (2)

where kz is the wave vector along z, εα , and tα depend on kx ,
ky , and orbital α. The more detailed expression and derivation
can be found in Appendix. Let us note here that εα and tα can
be either obtained from the �R = (0,0,0), (0,0,1), and (0,1,1)
TB hopping elements, or by a direct fit to the DFT bandwidth
and center of gravity in the given direction (here z). Both
procedures yield similar results, see Appendix. We employ the
latter in the following since this also mimics some of the effects
of the other, smaller hopping elements. Along the z direction
this yields tyz = −0.475 eV, εyz = −0.01 eV for the yz (and
xz) orbital and txy = −0.03 eV for the xy orbital; εxy = εyz +
2tyz − 2txy preserves the degeneracy of t2g orbitals at �.

So far, we have simplified the TB Hamiltonian to a
dispersion 2t cos ka of nearest-neighbor-hopping type, which
allows us to treat all directions and orbitals independently. For
small k, we now perform a Fourier expansion and obtain h̄2k2

2m∗

with m∗ = − h̄2

2a2t
. The obtained m∗ for yz is 0.53me, which is

very comparable to the NFE fitting value 0.56me. When k is
large, however, 2t cos ka gives a much better description than
the NFE model, as shown in Fig. 1(b).

C. TB model for SVO thin films

Following a similar procedure as in bulk SVO,6 a first-
principles based TB Hamiltonian can be expressed in matrix
form similar to Eq. (1). Such a TB model can exactly reproduce
the DFT results, as shown in Fig. 2 for N = 6 layers.

In contrast to bulk SVO, this thin film now has 18 Wannier
orbitals, which are centered around six V sites and which have
a similar character as bulk Wannier orbitals. Nevertheless, the
Hamiltonian has some essential changes. One major change
arises from the geometric confinement of thin films. In thin
films, the lattice vector �R becomes two dimensional with
(lx,ly) = lx �ex + ly �ey ; the previous lz component now points
to different V sites within the unit cell and such a hopping is
henceforth denoted by t i,i+1(0,0). In k space, this translates to

TABLE II. Site and orbital dependent hopping integrals of SVO
thin films with N = 6. The first and second columns are the on-site
energies of xy and yz orbitals of each site i; the third and forth
columns are the hopping integrals along the z and y directions for yz

orbitals, i.e., t i−1,i
yz,yz (0,0) and t i,i

yz,yz(0,1), respectively; the fifth column
shows the hopping integrals along the y direction for the xy orbitals,
i.e., t i,i

xy,xy(0,1). All values are in units of eV.

yz xy yz along z yz along y xy along y

1st V 0.508 0.436 0 −0.224 −0.260
2nd V 0.599 0.594 −0.242 −0.262 −0.259
3rd V 0.584 0.583 −0.255 −0.258 −0.259

a band structure, which is dispersionless in the z direction but,
instead, has N times more bands.

Table II lists the calculated hopping integrals of the Wannier
orbitals. Clearly, there is no hopping from the surface layer
(first V layer) to the vacuum, while there is a large hopping term
(−0.242 eV) between the first and second V layers. In contrast,
all other layers contain hopping terms of similar magnitude to
two neighboring sites along the ±z directions. In this sense,
the predominant effect of the geometric confinement is to cut
the hopping term from surface layer to vacuum. This simply
reflects that electrons are not allowed to move outside the thin
films, as illustrated in Fig. 4. Such a geometric confinement
plays a key role in quantum well states of SVO thin films.

There is a second important effect induced by the surface
caused by the relaxation of the surface atoms: the surface Sr
atom shifts inwards by 0.12 Å and the surface O atom outwards
by 0.06 Å, due to surface dangling bonds. This changes the
local crystal fields in the surface layer and to a lesser extend in
the neighboring subsurface layers. As listed in the Table II, the
local crystal field energies (first and second columns) become
site and orbital dependent. The biggest effect is observed for
the εxy of the surface layer, which has a 0.16 eV lower energy
than in the second layer. This local potential is responsible for
the DFT pronounced level splitting of the xy orbitals at �, see
Fig. 2. We note that ε and t converge to the bulk values very
quickly; already for the third layer, the difference to the bulk
value is small. In this sense, a surface potential well will be
formed. In the following sections, we will show that such a
potential well plays a crucial rule for the surface confinement
of 2D electron gas at STO surfaces and LAO/STO interfaces.
Hence, we need to include this effect for surfaces and interfaces
(Sec. III E), whereas it is of lesser relevance and hence

FIG. 4. Schematic figure of the effective one-dimension single-
orbital TB model for describing electrons geometrically confined in
ultrathin films. Here, ε is the a local potential, and t is the hopping
term between nearest neighbors. The confinement is characterized
by cutting the hopping term t from the outmost sites (i = 1, N ) to
vacuum.
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has not been taken into account for the thin-film geometry
(Sec. III D).

D. Simplified TB model for SVO thin films

To obtain an intuitive physical picture, we will again
simplify the first-principles based TB model. We first ignore
the surface effect (surface or interface potential well) and focus
on the geometrical confinement of the hopping term only. We
here employ the same approximation and parameters as in
the simplified TB model for bulk in Eq. (2). That is, for a
given orbital and specific kx , ky , we have a one-dimensional
intraband TB hopping. For the thin layer, this single-band
TB hopping is confined within N sites. Hence we simply cut
the hopping term from surface layer to vacuum, as illustrated
in Fig. 4 and justified by Table II. The Hamiltonian is then
expressed as an N × N matrix:

⎛
⎜⎜⎜⎜⎜⎝

ε t 0 0 0 0

t ε t 0 0 0

0 0 . . . . . . . . . 0

0 0 0 t ε t

0 0 0 0 t ε

⎞
⎟⎟⎟⎟⎟⎠

. (3)

Here, t and ε depend on kx , ky and α in the same way as
in Eq. (2). The eigenvalues of the matrix are the quantized
energies of the quantum well states that are confined to the
thin film. For such a tridiagonal matrix, the eigenvalues have
a simple analytical expression:

ε + 2t cos

(
πn

N + 1

)
, n = 1,2, . . . ,N, (4)

where the quantum number n indexes the N quantized energy
levels emerging from the confinement in the z direction. At �,
we take the bulk values t = −0.475 eV and ε = −0.01 eV for
the yz orbital. The quantized energies of Eq. (4) give much
better results than the quantized levels h̄2π2n2

2m∗N2a2 of the NFE
model, as the comparison with DFT in Fig. 3 shows. For a low
quantum number n and a thick film with large N , the quantized
energies are small, and the two models give consistent results.
However, for larger quantum number n or thin films with
small N , the TB gives much better results. This is expected,
since the TB model yields a good description for both a small
and large momentum k, as is shown for bulk SVO shown in
Fig. 1(b). While the DFT clearly shows the superiority of the
TB model, experimentally, more data are needed for a clear
statement in this respect. This is possible by growing thinner
films (small N ), where the separation between NFE and TB
models becomes apparent.

Next, we will consider a surface potential well as a further
source of confinement. In principle, this can be done for the
SVO thin layer. However, in the case of the yz orbitals of Fig. 3,
the quantum well state spreads over all layers of the thin film,
so that the surface potential hardly affects the results of Fig. 3.
This is different for the xy orbitals, as here the wave functions
are localized within single layers and the surface layer has a
rather different potential (see Table II).

FIG. 5. (Color online) Energy gain of the lowest xy (black) and
yz (red) energy eigenstates due to a surface potential of strength V0

and a width of three layers as depicted in the inset.

E. TB model for STO surfaces and interfaces

In contrast to SVO ultrathin films, where electrons are
geometrically confined within the thin films by cutting the
hopping terms from the two surfaces into vacuum, STO
surfaces (or LAO/STO interfaces) is a semi-infinite system
with only one surface (or interface) where the hopping term is
cut. Hence cutting the hopping is not sufficient for a quantum
confinement and quantized energy subbands. An attractive
potential at the surfaces is required to trap electrons in a 2D
conducting sheet.

Generally, the surface potential can be generated by two
sources: extrinsic defects such as accumulation of defects at the
surface, and intrinsic surface effects such as atomic relaxation.
To calculate the former one, we need the distribution of
the defects and then solve the potential well and 2DEG
self-consistently. In this case, the quantitative strength of the
extrinsically induced surface potential depends on experimen-
tal details and might vary considerably. This extrinsic surface
potential is not considered in our work and would add to the
intrinsic one, which can be well included by DFT calculations.

Indeed, both the DFT calculation of the intrinsic surface
potential6,24,34,35 and experiment2,5,36,37 show a potential well
of width three to four layers and of depth 0.2∼0.3 eV at the
STO surface. The DFT calculated band structure is very similar
to the case of SVO thin films, which indicates some general
behavior of perovskite oxide heterostructure, such as the
splitting between xy and yz bands, quantized yz subbands, and
that the lowest yz orbital has a large spread into the bulk layers.

To model the surface potential well in TB, we introduce
a site dependent ε, as depicted in the inset of Fig. 5. The
width of the surface potential well is taken to be three unit
cells as suggested by both, DFT and experiment. If we assume
that the xy and yz orbitals have the same local potential ε,
i.e., the same V0 in Fig. 5, the two orbitals only differ regarding
the magnitude of their hopping terms: txy = −0.03 eV and
tyz = −0.475 eV for hopping along the z direction. We cut the
hopping term from the surface layer to vacuum, and increase
the thickness N up to 100 sites to simulate the semi-infinite
condition until the quantized energies are converged.

In the TB model, we have to calculate the eigenvalues of the
matrix (3) supplemented by a layer dependent ε. The quantized
xy and yz energies, which we obtained numerically are plotted
in Fig. 5 as a function of the strength V0 (see the inset of
Fig. 5 for the relation to ε; the bulk reference energy is set to
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FIG. 6. (Color online) Layer-resolved charge distribution of the
lowest quantized state of xy (a) and yz (b) characters when confined
by a surface potential V0 = −240 meV as depicted in the inset
of Fig. 5. We show the charge distribution without (filled circles)
and with an external electric field of −5 mV per unit cell lattice
vector (unfilled squares). The layer with index 1 denotes the surface
layer.

zero). Electrons are confined in a quantum well surface state
if and only if the lowest energy (relative to the bulk energy)
is negative in Fig. 5. Otherwise, electrons are not confined at
the surface, but become 3D bulk like. For V0 > −30 meV, no
2D electron gas can be formed at the surface; both xy and
yz electrons will spread into the bulk layers. For −30 meV >

V0 > −200 meV, only xy electrons are 2D confined, whereas
electrons in the yz orbitals still spread into the bulk. This is
because the tyz hopping is much larger than txy , and hence
yz orbitals extend more easily into the bulk. Eventually, for a
potential strength V0 < −200 meV, both xy and yz electrons
can be confined at the surface and a 2DEG is formed.

Both the DFT6,34 calculated and the experimentally36

observed surface potential V0 is about −300 to −200 meV
per three unit cells. Hence we conclude that xy carriers are
always localized at the surface, whereas yz carriers are on
the verge of a 2D confinement. Our results therefore suggest
that whether yz states are quantized or not is very sensitive to
surface details. This might explain why Santander-Syro et al.5

observed a yz subband at STO surfaces, whereas Meevasana
et al.38 did not.

For V0 = −240 meV, we plot the charge distribution of the
lowest quantized xy and yz states in Fig. 6. The xy state is
strongly localized at the surface layer (upper panel of Fig. 6),
and hence its quantized energy in Fig. 5 also basically reflects
the local surface potential V0. In a similar way, the second
quantized state is localized at the subsurface layer, and its
energy reflects the local potential of a subsurface site, i.e.,
2/3 V0 (not shown). On this basis, we argue that the energy
of the xy subbands5,38 can serve as a measure of the surface
potential well. In contrast, even the lowest yz state has a very
long tail extending ∼10 unit cells into the bulk.23,25,39,40 That
is, even though the surface layer has the lowest local potential,
the lowest quantized yz state has actually a large contribution

from the second and third layers. We emphasize that this TB
result is consistent with DFT.6,24,34,35

Since the lowest yz subband is on the verge of a 2D
confinement for a realistic surface potential well, an external
electric field might strongly influence its 2D properties. We
hence apply an external electric field, which together with
the induced polarization yields an effective internal field of
−5 mV per unit cell. Considering the huge polarization of STO,
such an internal electric field is experimentally feasible.14

Figure 6 shows that the charge distribution of the lowest yz

state changes dramatically, whereas the xy orbital is virtually
unaffected. This striking result indicates that applying an
electric field cannot tune the xy charge carries, but does
tune the yz charge carriers. This result hence indicates that
electric field tunable properties such as superconductivity,9

spin-orbit coupling,14,15 and mobility41,42 stem predominantly
from yz charge carriers. The fact that the lowest yz subband
is on the verge of the 2D confinement might be the key for
understanding much of the puzzling behavior at LAO/STO or
STO surfaces.

IV. DISCUSSION AND CONCLUSION

In this paper, we developed first-principles based tight-
binding (TB) models with hopping t and site dependent
potential ε to study the quantum confinement of perovskite
oxide heterostructures for two specific cases: (i) SVO ultrathin
films, where electrons are geometrically confined by cutting a
hopping term t from surface to vacuum; (ii) STO surfaces or
LAO/STO interfaces, where electrons are confined by a surface
potential well as described by a layer-dependent potential ε.
In both cases, we have shown that a simple TB model gives
a much better and more reliable description of d electrons
in transition metal oxides than a nearly free electron (NFE)
model.

Already the two hopping parameters in the two inequivalent
nearest-neighbor directions of the t2g orbitals, describes well
the complex DFT and experimental band structure of SVO
films, including the orbital-selective quantum well states. By
means of the TB model, we find the discrete energy levels at
2t cos( πn

N+1 ) with quantum number n = 1, . . . ,N , in contrast,

with the NFE model we find the levels at h̄2π2n2

2m∗N2a2 . For STO
surfaces and LAO/STO interfaces with a reasonable surface
potential well, xy states are always localized as 2D carriers,
which is directly reflected by the discrete xy energy levels. In
contrast, the lowest yz state is on the verge of 2D confinement
and has a much larger extension into the bulk layers. As a
consequence, we show that the yz charge distribution, but not
the xy, can be tuned by an experimentally accessible electric
field.
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APPENDIX

Let us consider the energy-momentum dispersion along the
z direction for fixed kx ,ky :

Hαβ(kx,ky)(kz) =
∑
lx ,ly

∑
lz

tαβ(lx,ly,lz)e
i(lxkx+lyky )eilzkz .

Since the next nearest-neighbor hopping term �R = (0,0,2)
as listed in Table I is negligible, we consider only the
nearest-neighbor hopping along z direction with |lz| � 1.
Due to the inversion symmetry of bulk SVO, tαβ(lx,ly, −
1) = tαβ(lx,ly,1). Considering furthermore that the interorbital
hopping term is negligible, the three orbitals decouple with an
intraorbital Hamiltonian

Hαα(kz) = εα + 2tα cos(kza). (A1)

Here, εα = ∑
lx ,ly

tαβ(lx,ly,0)ei(lxkx+lyky ) and tα =∑
lx ,ly

tαβ(lx,ly,1)ei(lx kx+lyky ). The simple analytical from
of Eq. (A1) accounts for the most important hopping
terms of t2g orbitals, and allows us to easily compare the
energy-momentum dispersion to the theoretical, e.g., DFT,
band structure, or ARPES experiments. We still need to
determine εα and tα , which depend on the orbital and
direction considered.

For instance, in the case of the yz orbital and z direction,
the hopping terms are, as listed in Table I, t(0,0,0) ≡
t0 = 0.579 eV, t(0,0,1) ≡ t1 = −0.259 eV, t(1,0,0) ≡ t2 =
−0.026 eV, and t(0,1,1) ≡ t3 = −0.082 eV; for the xy, xz

orbital related terms have to be taken. From these, we obtain
the effective parameters ε and t for three orbitals at fixed kx ,
ky for the dispersion along the z direction:

εxy = t0 + 2t1 cos kxa + 2t1 cos kya + 4t3 cos kx cos ky,

εyz = t0 + 2t2 cos kxa + 2t1 cos kya,

εxz = t0 + 2t1 cos kxa + 2t2 cos kya,

txy = t2, tyz = t1 + 2t3 cos kya, txz = t1 + 2t3 cos kxa.

If we focus on the energy dispersion from � = (0,0,0) to
(0,0,π/a), we set kx = 0, ky = 0. For the yz orbital, we
then obtain tyz = t1 + 2t3 = −0.423 eV and εyz = t0 + 2t1 +
2t2 = 0.009 eV. In this direction, the xz orbital has the
same parameters due to cubic symmetry. For an xy orbital
on the other hand, the two effective TB parameters are
txy = −0.026 eV and εxy = t0 + 4t1 + 4t3 = −0.785 eV. At
�, all three orbitals are degenerate and have the energy
t0 + 4t1 + 2t2 + 4t3.

Alternatively, we can fit tyz and εyz directly to the DFT band
structure: the band dispersion of the yz orbital from �(0,0,0) to
Z(0,0,π/a) is 1.90 eV. Hence Eq. (2) and DFT give the same
bandwidth for tyz = −1.90 eV/4 = −0.475 eV. The center
of gravity of the band allows us to determine εyz = −0.01
eV. This fit well agrees with the above parameters determined
from the TB hopping parameters. The same is true for the xy

orbital. Here, the DFT band width is 0.12 eV, and hence txy =
−0.03 eV; εxy = εyz + 2tyz − 2txy preserves the degeneracy
of the t2g orbitals at �.
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