Exchange Mechanisms
Erik Koch
Institute for Advanced Simulation, Forschungszentrum Jülich

Magnetism is Quantum Mechanical

QUANTUM MECHANICS
THE KEY TO UNDERSTANDING MAGNETISM

Nobel Lecture, 8 December, 1977
J.H. VAN VLECK

Harvard University, Cambridge, Massachusetts, USA

Bohr - van Leeuwen theorem

in a classical system in thermal equilibrium a magnetic field will not induce a magnetic moment

Lorentz force perpendicular to velocity \Rightarrow does not change kinetic energy
Boltzmann statistics occupies states according to energy

magnetic moments

complex wave function: current density

$$
\vec{j}(\vec{r})=-\frac{e \hbar}{2 i m_{e}}(\overline{\psi(\vec{r})} \nabla \psi(\vec{r})-\psi(\vec{r}) \nabla \overline{\psi(\vec{r})})
$$

orbital magnetic moment

$$
\vec{\mu}=\frac{1}{2} \int \vec{r} \times \vec{j} d^{3}=-\frac{e \hbar}{2 m_{e}}\langle\vec{L}\rangle=-\mu_{B}\langle\vec{L}\rangle
$$

electron spin

$$
\vec{\mu}_{S}=-g_{e} \mu_{B}\langle\vec{S}\rangle, \quad g_{e} \approx 2.0023 \ldots
$$

atomic moments of the order of μ_{B}

magnetic interaction

dipole-dipole interaction

$$
\Delta E=\frac{\vec{\mu}_{1} \cdot \vec{\mu}_{2}-3\left(\hat{R} \cdot \vec{\mu}_{1}\right)\left(\hat{R} \cdot \overrightarrow{\mu_{2}}\right)}{4 \pi \varepsilon_{0} c^{2} R^{3}}
$$

interaction energy of two dipoles μ_{B} two Bohr radii a_{0} apart:

$$
\Delta E=-\frac{2 \mu_{B}^{2}}{4 \pi \varepsilon_{0} c^{2}\left(2 a_{0}\right)^{3}}=-\frac{1 / 2}{137^{2} 8} \text { Hartree } \approx 0.09 \mathrm{meV}
$$

expect magnetic ordering below temperatures of about 1 K
what about magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ with $\mathrm{T}_{\mathrm{c}} \approx 840 \mathrm{~K}$?

exchange mechanisms

coupling of magnetic moments results from the interplay of the Pauli principle with Coulomb repulsion and electron hopping

not a fundamental but an effective interaction: model/mechanism

Models and Mechanisms

The art of model-building is the exclusion of real but irrelevant parts of the problem, and entails hazards for the builder and the reader. The builder may leave out something genuinely relevant; the reader, armed with too sophisticated an experimental probe or too accurate a computation, may take literally a schematized model whose main aim is to be a demonstration of possibility.
P.W. Anderson

Local Moments and Localized States
Nobel Lecture 1977

Coulomb Exchange

Coulomb repulsion between electrons

$$
H_{U}=\sum_{i<j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

consider two electrons in orthogonal orbitals φ_{a} and φ_{b} Slater determinant of spin-orbitals:

$$
\begin{aligned}
& \psi_{a, \sigma ; b \sigma^{\prime}}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{a}\left(\overrightarrow{r_{1}}\right) \sigma\left(s_{1}\right) & \phi_{a}\left(\vec{r}_{2}\right) \sigma\left(s_{2}\right) \\
\phi_{b}\left(\vec{r}_{1}\right) \sigma^{\prime}\left(s_{1}\right) & \phi_{b}\left(\vec{r}_{2}\right) \sigma^{\prime}\left(s_{2}\right)
\end{array}\right| \\
& \quad=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{a}\left(\overrightarrow{r_{2}}\right) \sigma\left(s_{1}\right) \sigma^{\prime}\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \sigma^{\prime}\left(s_{1}\right) \sigma\left(s_{2}\right)\right)
\end{aligned}
$$

Coulomb exchange: same spin

when electrons have same spin: $\sigma=\sigma^{\prime}$

$$
\psi_{a, \sigma ; b \sigma}=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \sigma\left(s_{1}\right) \sigma\left(s_{2}\right)
$$

Coulomb matrix-element

$$
\left\langle\psi_{a, \sigma ; b, \sigma}\right| \frac{1}{\left|\vec{r}_{1}-\overrightarrow{r_{2}}\right|}\left|\psi_{a, \sigma ; b, \sigma}\right\rangle=\frac{1}{2}\left(U_{a b}-J_{a b}-J_{b a}+U_{b a}\right)=U_{a b}-J_{a b}
$$

Coulomb integral $\quad U_{a b}=\int d^{3} r_{1} \int d^{3} r_{2} \frac{\left|\phi_{a}\left(\vec{r}_{1}\right)\right|^{2}\left|\phi_{b}\left(\vec{r}_{2}\right)\right|^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$
exchange integral $\quad J_{a b}=\int d^{3} r_{1} \int d^{3} r_{2} \frac{\overline{\phi_{a}\left(\vec{r}_{1}\right)} \phi_{b}\left(\vec{r}_{1}\right) \overline{\phi_{b}\left(\vec{r}_{2}\right)} \phi_{a}\left(\vec{r}_{2}\right)}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$

Coulomb exchange: opposite spin

when electrons have opposite spin: $\sigma=-\sigma^{\prime}$

$$
\begin{aligned}
& \psi_{a, \uparrow ; b \downarrow}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right) \uparrow\left(s_{1}\right) \downarrow\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \downarrow\left(s_{1}\right) \uparrow\left(s_{2}\right)\right) \\
& \psi_{a, \downarrow ; b \uparrow}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right) \downarrow\left(s_{1}\right) \uparrow\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \uparrow\left(s_{1}\right) \downarrow\left(s_{2}\right)\right)
\end{aligned}
$$

diagonal matrix-elements $\quad\left\langle\psi_{a, \sigma ; b,-\sigma}\right| \frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}\left|\psi_{a, \sigma ; b,-\sigma}\right\rangle=U_{a b}$ off-diagonal matrix-elements $\quad\left\langle\psi_{a \uparrow ; b \downarrow}\right| \frac{1}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|}\left|\psi_{a \downarrow ; b \uparrow}\right\rangle \quad=-J_{a b}$

Coulomb matrix

$$
\left(\begin{array}{rr}
U_{a b} & -J_{a b} \\
-J_{a b} & U_{a b}
\end{array}\right)
$$

Coulomb exchange

$$
H_{U}=\left(\begin{array}{cccc}
U_{a b}-J_{a b} & 0 & 0 & 0 \\
0 & U_{a b} & -J_{a b} & 0 \\
0 & -J_{a b} & U_{a b} & 0 \\
0 & 0 & 0 & U_{a b}-J_{a b}
\end{array}\right) \begin{aligned}
& \uparrow \uparrow \\
& \uparrow \downarrow \\
& \downarrow \uparrow \\
& \downarrow \downarrow \\
& \text { eigenstates }
\end{aligned}
$$

triplet: $\Delta \varepsilon_{\text {triplet }}=U_{a b}-J_{a b}$

$$
\psi_{\uparrow \uparrow}=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right)
$$

$$
\frac{1}{\sqrt{2}}\left(\psi_{\uparrow \downarrow}+\psi_{\downarrow \uparrow}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle)
$$

$$
\psi_{\downarrow \downarrow} \quad=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right)
$$

singlet: $\Delta \varepsilon_{\text {singlet }}=U_{a b}+J_{a b}$

$$
\frac{1}{\sqrt{2}}\left(\psi_{\uparrow \downarrow}-\psi_{\downarrow \uparrow}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)+\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle)
$$

Coulomb exchange

orthogonal orbitals φ_{a} and φ_{b} : $\quad J_{a b}>0$
singlet
triplet

first of Hund's rules: ground-state has maximum spin

more electrons more complicated Coulomb matrix

Multiplets in
 Transition Metal Ions

atomic multiplets

Q. Zhang:

Calculations of Atomic Multiplets across the Periodic Table MSc thesis, RWTH Aachen 2014 www.cond-mat.de/sims/multiplet

Self-consistent field computation

Self-consistent iterations

Units

Converge tocel neximy to $+\cdots$

nase serse
Exchange-correlation method
\qquad

Generate report

Sorting oven 2 anced
Report digits 4,3

Wave function plots

Multiplet calculation

$|2,2,2,2\rangle=c_{21}^{s} c_{-21}^{\prime} c_{-11}^{s} c_{01}^{\prime} c_{11}^{\prime} c_{21}^{\prime}(0)$

12, 2, 2, -1 $\rangle=\frac{1}{\sqrt{4}}\left(c_{-11}^{\prime} c_{01}^{\prime} c_{11}^{\prime} c_{21}^{\prime} c_{-2 \uparrow}^{\prime} c_{21}^{\prime}-c_{-21}^{\prime} c_{01}^{\prime} c_{11}^{\prime} c_{21}^{\prime} c_{-11}^{\prime} c_{21}^{\prime}+c_{-21}^{\prime} c_{-11}^{\prime} c_{11}^{\prime} c_{21}^{\prime} c_{01}^{\prime} c_{21}^{\prime}-c_{-21}^{\prime} c_{-11}^{\prime} c_{01}^{\prime} c_{21}^{\prime} c_{11}^{\prime} c_{21}^{\prime}\right.$
12, 2, 2, -2 $)=c_{-24}^{\dagger} c_{-14}^{\dagger} c_{04}^{\dagger} c_{14}^{\dagger} c_{21}^{\dagger} c_{21}^{\dagger}|0\rangle$
12, 1,2, 2 $\left.\rangle=c_{14}^{*} c_{-21}^{*} c_{-11}^{\prime} c_{01}^{\prime} c_{11}^{\prime} c_{21}^{\prime}, 10\right\rangle$

[2, 1, 2, 0$\rangle=\frac{1}{\sqrt{6}}\left(c_{01}^{\prime} c_{11}^{\prime} c_{21}^{\prime} c_{-21}^{y} c_{-11}^{\prime} c_{11}^{\prime}-c_{-14}^{y} c_{14}^{\prime} c_{21}^{\prime} c_{-21}^{y} c_{01}^{\prime} c_{11}^{\prime}+c_{-21}^{\gamma} c_{14}^{\prime} c_{21}^{y} c_{-11}^{y} c_{01}^{\prime} c_{11}^{\prime}+c_{-11}^{y} c_{01}^{\prime} c_{11}^{\prime} c_{-21}^{y} c_{11}^{\prime} c_{21}^{\prime}\right.$

$|2, \quad 1,2,-2\rangle=c_{-24}^{\zeta} c_{-14}^{\prime} c_{01}^{\prime} c_{11}^{\prime} c_{2 j}^{\prime} c_{1!}^{\prime}|0\rangle$

kinetic exchange

Coulomb exchange: Coulomb matrix for anti-symmetric wave functions
kinetic exchange: only diagonal \boldsymbol{U}, interplay of Pauli principle and hopping
toy model - two sites with a single orbital hopping between orbitals: t two electrons in same orbital: U

one electron Hamiltonian (tight-binding)

$$
H=\left(\begin{array}{rr}
0 & -t \\
-t & 0
\end{array}\right) \quad|\uparrow, \cdot\rangle
$$

eigenstates

$$
\phi_{ \pm}=\frac{1}{\sqrt{2}}\left(\phi_{1} \pm \phi_{2}\right) \quad \varepsilon_{ \pm}=\mp t
$$

direct exchange: same spin

two electrons of same spin: basis states
|\uparrow,\uparrow\rangle, |\downarrow,\downarrow\rangle
|\uparrow,\uparrow\rangle, |\downarrow,\downarrow\rangle

Hamiltonian: no hopping, no Coulomb matrix element (Pauli principle)

$$
\begin{gathered}
H=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
|\uparrow, \uparrow\rangle \\
|\downarrow, \downarrow\rangle \\
\varepsilon_{\text {triplet }}=0
\end{array}
\end{gathered}
$$

direct exchange: opposite spin

two electrons of opposite spin: basis states

$$
|\uparrow, \downarrow\rangle,|\downarrow, \uparrow\rangle \quad \text { (covalent states) } \quad|\uparrow \downarrow, \cdot\rangle,|\cdot, \uparrow \downarrow\rangle \quad \text { (ionic states) }
$$

Hamiltonian

$$
H=\left(\begin{array}{rrrr}
0 & 0 & -t & -t \\
0 & 0 & +t & +t \\
-t & +t & U & 0 \\
-t & +t & 0 & U
\end{array}\right) \quad \begin{aligned}
& |\uparrow, \downarrow\rangle \\
& |\downarrow, \uparrow\rangle \\
& |\downarrow \downarrow, \cdot\rangle \\
& |\cdot, \uparrow \downarrow\rangle
\end{aligned}
$$

hopping -t: keep track of Fermi sign!

$$
|\uparrow, \downarrow\rangle \xrightarrow{-t}|\uparrow \downarrow, \cdot\rangle \quad \stackrel{\sim}{\curvearrowleft}, \stackrel{-(-t)}{\longrightarrow}|\uparrow \downarrow, \cdot\rangle
$$

direct exchange: opposite spin

eigenstates

$$
\begin{array}{ll}
\varepsilon_{ \pm}=\frac{U}{2} \pm \frac{\sqrt{U^{2}+16 t^{2}}}{2}, & \psi_{ \pm}=\frac{\left.\left(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle-\frac{\varepsilon_{ \pm}}{2 t}[|\uparrow \downarrow, \cdot\rangle+|\cdot, \uparrow\rangle\rangle\right]\right)}{\sqrt{2+\varepsilon_{ \pm}^{2} /\left(2 t^{2}\right)}} \\
\varepsilon_{\text {cov }}=0 & , \\
\varepsilon_{\text {ion }}=U & \psi_{\text {cove }}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) \quad \quad, \quad \psi_{\text {ion }}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow, \cdot\rangle-|\cdot, \uparrow\rangle)
\end{array}
$$

limit $U \rightarrow \infty$ (or $t \rightarrow 0$):

$$
\begin{array}{llr}
\varepsilon_{-} & \rightarrow U+4 t^{2} / U \\
\varepsilon_{+} & \rightarrow & -4 t^{2} / U
\end{array}
$$

downfolding

partition Hilbert space

$$
H=\left(\begin{array}{ll}
H_{00} & T_{01} \\
T_{10} & H_{11}
\end{array}\right)
$$

resolvent

$$
G(\varepsilon)=(\varepsilon-H)^{-1}=\left(\begin{array}{cc}
\varepsilon-H_{00} & -T_{01} \\
-T_{10} & \varepsilon-H_{11}
\end{array}\right)^{-1}
$$

inverse of 2×2 block-matrix

$$
G_{00}(\varepsilon)=\left(\varepsilon-\left[H_{00}+T_{01}\left(\varepsilon-H_{11}\right)^{-1} T_{10}\right]\right)^{-1}
$$

downfolded Hamiltonian

$$
H_{\text {eff }} \approx H_{00}+T_{01}\left(\varepsilon_{0}-H_{11}\right)^{-1} T_{10}
$$

good approximation: narrow energy range and/or small coupling

inversion by partitioning

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

invert block- 2×2 matrix
solve

$$
\begin{aligned}
M= & \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad M^{-1}=\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right) \quad\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A \tilde{A}+B \tilde{C}=1 \\
& C \tilde{A}+D \tilde{C}=0 \rightsquigarrow \tilde{C}=-D^{-1} C \tilde{A}
\end{aligned}
$$

$$
\rightsquigarrow \tilde{A}=\left(A-B D^{-1} C\right)^{-1}
$$

direct exchange: effective Hamiltonian

systematic treatment of limit $U \rightarrow \infty$ (or $t \rightarrow 0$): downfolding

$$
H=\left(\begin{array}{rr|rr}
0 & 0 & -t & -t \\
0 & 0 & +t & +t \\
\hline-t & +t & U & 0 \\
-t & +t & 0 & U
\end{array}\right)
$$

downfolding eliminates ionic states (actually change of basis)

$$
H_{\mathrm{eff}}(\varepsilon)=\binom{-t-t}{+t+t}\left(\begin{array}{cc}
\varepsilon-U & 0 \\
0 & \varepsilon-U
\end{array}\right)^{-1}\binom{-t+t}{-t+t} \approx-\frac{2 t^{2}}{U}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

diagonalize $H_{\text {eff }}$

$$
\begin{array}{lll}
\varepsilon_{t}=0 & \psi_{t}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) & \text { triplet } \\
\varepsilon_{s}=-\frac{4 t^{2}}{U} & \psi_{s}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle) & \text { singlet }
\end{array}
$$

direct exchange: effective spin-coupling

$$
J_{\text {direct }}=\varepsilon_{\text {triplet }}-\varepsilon_{\text {singlet }}=4 t^{2} / U \quad J>0 \quad \text { AF coupling }
$$

triplet
singlet

effective spin-Hamiltonian

$$
\begin{aligned}
H_{\text {eff }} & =-\frac{2 t^{2}}{U}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) \quad \begin{array}{l}
|\uparrow, \downarrow\rangle \\
|\downarrow, \uparrow\rangle
\end{array} \\
& =+\frac{2 t^{2}}{U}\left(2 S_{1}^{z} S_{2}^{z}-\frac{1}{2}+\left(S_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}\right)\right)=\frac{4 t^{2}}{U}\left(\vec{S}_{1} \cdot \vec{S}_{2}-\frac{1}{4}\right)
\end{aligned}
$$

Heisenberg J

keeping track of all these signs...

towards second quantization

Slater determinant $\quad \Phi_{\alpha \beta}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{\alpha}\left(x_{1}\right) \varphi_{\beta}\left(x_{2}\right)-\varphi_{\beta}\left(x_{1}\right) \varphi_{\alpha}\left(x_{2}\right)\right)$
corresponding Dirac state $\quad|\alpha, \beta\rangle=\frac{1}{\sqrt{2}}(|\alpha\rangle|\beta\rangle-|\beta\rangle|\alpha\rangle)$
use operators

$$
|\alpha, \beta\rangle=c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle
$$

position of operators encodes signs

$$
c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle=|\alpha, \beta\rangle=-|\beta, \alpha\rangle=-c_{\alpha}^{\dagger} c_{\beta}^{\dagger}|0\rangle
$$

product of operators changes sign when commuted: anti-commutation anti-commutator $\quad\{A, B\}:=A B+B A$

second quantization: motivation

specify N-electron states using operators

$N=0: \quad|0\rangle \quad$ (vacuum state) normalization: $\langle 0 \mid 0\rangle=1$
$N=1: \quad|\alpha\rangle=c_{\alpha}^{\dagger}|0\rangle \quad$ (creation operator adds one electron)
normalization: $\quad\langle\alpha \mid \alpha\rangle=\langle 0| c_{\alpha} c_{\alpha}^{\dagger}|0\rangle$
overlap:

$$
\langle\alpha \mid \beta\rangle=\langle 0| c_{\alpha} c_{\beta}^{\dagger}|0\rangle
$$

adjoint of creation operator removes one electron: annihilation operator

$$
c_{\alpha}|0\rangle=0 \text { and } c_{\alpha} c_{\beta}^{\dagger}= \pm c_{\beta}^{\dagger} c_{\alpha}+\langle\alpha \mid \beta\rangle
$$

$N=2: \quad|\alpha, \beta\rangle=c_{\beta}^{\dagger} c_{\alpha}^{\dagger}|0\rangle$
antisymmetry: $\quad c_{\alpha}^{\dagger} c_{\mathcal{B}}^{\dagger}=-c_{\beta}^{\dagger} c_{\alpha}^{\dagger}$

second quantization: formalism

vacuum state |0)
 and

set of operators c_{α} related to single-electron states $\varphi_{\alpha}(x)$ defined by:

$$
\begin{array}{ll}
c_{\alpha}|0\rangle=0 & \left\{c_{\alpha}, c_{\beta}\right\}=0=\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\} \\
\langle 0 \mid 0\rangle=1 & \left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\langle\alpha \mid \beta\rangle
\end{array}
$$

creators/annihilators operate in Fock space transform like orbitals!
field operators $\quad \hat{\psi}(x)=\sum_{n} \varphi_{\alpha_{n}}(x) c_{\alpha_{n}}$
Slater determinant $\frac{1}{\sqrt{N!}}\langle 0| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \ldots \hat{\psi}\left(x_{N}\right) c_{\alpha_{N}}^{\dagger} \ldots c_{\alpha_{2}}^{\dagger} c_{\alpha_{1}}^{\dagger}|0\rangle$

second quantization: examples

two-site model with one electron

$$
H=-t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)=-t \sum_{i, j, \sigma} c_{j \sigma}^{\dagger} c_{i \sigma}
$$

two-site model with two electrons

$$
\begin{aligned}
H & =-t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)+U\left(n_{1 \uparrow} n_{1 \downarrow}+n_{2 \uparrow} n_{2 \downarrow}\right) \\
& =-t \sum_{i, j, \sigma} c_{j \sigma}^{\dagger} c_{i \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
\end{aligned}
$$

also works for single electron and for more sites

- easy to handle Slater determinants
- easy to write down many-body Hamiltonian (become independent of particle number)

Hartree-Fock

ansatz: Slater determinant

$$
\left|\psi\left(\theta_{\uparrow}, \theta_{\downarrow}\right)\right\rangle=\left(\sin \left(\theta_{\downarrow}\right) c_{1 \downarrow}^{\dagger}+\cos \left(\theta_{\downarrow}\right) c_{2 \downarrow}^{\dagger}\right)\left(\sin \left(\theta_{\uparrow}\right) c_{1 \uparrow}^{\dagger}+\cos \left(\theta_{\uparrow}\right) c_{2 \uparrow}^{\dagger}\right)|0\rangle
$$

energy expectation value

$$
E\left(\theta_{\uparrow}, \theta_{\downarrow}\right)=-2 t\left(\sin \theta_{\uparrow} \sin \theta_{\downarrow}+\cos \theta_{\uparrow} \cos \theta_{\downarrow}\right)\left(\cos \theta_{\uparrow} \sin \theta_{\downarrow}+\sin \theta_{\uparrow} \cos \theta_{\downarrow}\right)
$$

$$
+U\left(\sin ^{2} \theta_{\uparrow} \sin ^{2} \theta_{\downarrow}+\cos ^{2} \theta_{\uparrow} \cos ^{2} \theta_{\downarrow}\right)
$$

minimize wrt θ_{\uparrow} and θ_{\downarrow}
HF orbitals respect symmetry of model: restricted Hartree-Fock (RHF) here: $\theta_{\uparrow}=\theta_{\downarrow}=\pi / 4$

HF allowed to break symmetry: unrestricted Hartree-Fock (UHF)
here: $\theta_{\downarrow}=\pi / 2-\theta_{\uparrow}$

Hartree-Fock

energy expectation value for $\theta_{\downarrow}=\pi / 2-\theta_{\uparrow}$

Hartree-Fock

direct kinetic exchange

singlet

U
triplet

direct exchange
virtual hopping $-t^{2} / \mathrm{U} \times 2$

superexchange

symmetry:
only one oxygen-p involved in hopping

TMOs: negligible direct hopping between d-orbitals instead hopping via oxygen

U_{d}

$H=\sum_{\sigma}\left(\varepsilon_{d} \sum_{i} n_{i \sigma}+\varepsilon_{p} n_{p \sigma}-t_{p d} \sum_{i}\left(c_{i \sigma}^{\dagger} c_{p \sigma}+c_{p \sigma}^{\dagger} c_{i \sigma}\right)\right)+U_{d} \sum_{i} n_{i \uparrow} n_{i \downarrow}$

superexchange: same spin

$$
H=\sum_{\sigma}\left(\varepsilon_{d} \sum_{i} n_{i \sigma}+\varepsilon_{p} n_{p \sigma}-t_{p d} \sum_{i}\left(c_{i \sigma}^{\dagger} c_{p \sigma}+c_{p \sigma}^{\dagger} c_{i \sigma}\right)\right)+U_{d} \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

oxygen-p full, two d-electrons of same spin

$$
H_{\mathrm{eff}}=\left(t_{p d}, t_{p d}\right)\left(\begin{array}{cc}
\varepsilon-\left(U_{d}+\Delta_{p d}\right) & 0 \\
0 & \varepsilon-\left(U_{d}+\Delta_{p d}\right)
\end{array}\right)\binom{t_{p d}}{t_{p d}} \approx-\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}
$$

$$
\begin{aligned}
& H=\left(\begin{array}{c|cc}
0 & t_{p d} & t_{p d} \\
\hline t_{p d} & U_{d}+\Delta_{p d} & 0 \\
t_{p d} & 0 & U_{d}+\Delta_{p d}
\end{array}\right) \quad \begin{array}{c}
c_{2 \uparrow}^{\dagger} c_{p \downarrow}^{\dagger} c_{p \uparrow}^{\dagger} \uparrow c_{1 \uparrow}^{\dagger}|0\rangle \\
c_{2 \uparrow}^{\dagger} c_{p \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle \\
c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger} c_{p \uparrow}^{\dagger} \dagger \uparrow \uparrow
\end{array} \\
& 4 \\
& \dagger \\
& \text { 4, }
\end{aligned}
$$

superexchange：opposite spin

$$
\begin{aligned}
& \left(\begin{array}{cc|ccccc|ccc}
0 & 0 & +t_{p d} & +t_{p d} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & +t_{p d} & +t_{p d} & 0 & 0 & 0 \\
\hline+t_{p d} & 0 & U_{d}+\Delta_{p d} & 0 & 0 & 0 & -t_{p d} & 0 & -t_{p d} \\
+t_{p d} & 0 & 0 & U_{d}+\Delta_{p d} & 0 & 0 & 0 & -t_{p d} & -t_{p d} \\
0 & +t_{p d} & 0 & 0 & U_{d}+\Delta_{p d} & 0 & +t_{p d} & 0 & +t_{p d} \\
0 & +t_{p d} & 0 & 0 & 0 & U_{d}+\Delta_{p d} & 0 & +t_{p d} & +t_{p d} \\
\hline 0 & 0 & -t_{p d} & 0 & +t_{p d} & 0 & U_{d} & 0 & 0 \\
0 & 0 & 0 & -t_{p d} & 0 & +t_{p d} & 0 & U_{d} & 0 \\
0 & 0 & -t_{p d} & -t_{p d} & +t_{p d} & +t_{p d} & 0 & 0 & 2\left(U_{d}+\Delta_{p d}\right)
\end{array}\right) \\
& \text { 十年 } \\
& \text { 十 \# } \\
& + \text { \# } \\
& +4+ \\
& -\frac{1}{4}+
\end{aligned}
$$

superexchange: opposite spin

$$
\begin{aligned}
H_{\text {eff }}= & H_{00}+T_{01}\left(\varepsilon-\left(H_{11}+T_{12}\left(\varepsilon-H_{22}\right)^{-1} T_{21}\right)\right)^{-1} T_{10} \\
\approx & H_{00}-T_{01} H_{11}^{-1} T_{10}-T_{01} H_{11}^{-1} T_{12} H_{22}^{-1} T_{21} H_{11}^{-1} T_{10} \\
= & -\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{2 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}}\left(\frac{1}{U_{d}}+\frac{1}{U_{d}+\Delta_{p d}}\right)\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& \\
& \\
& \\
& \text { singlet-triplet spliting: }
\end{aligned}
$$

ferromagnetic superexchange

180° superexchange
hopping only via oxygen- p pointing in direction connecting d-orbitals

no hopping connecting d-orbitals but Coulomb exchange on oxygen
double exchange

ferro superexchange: same spin

ferro superexchange: opposite spin $\uparrow \downarrow \downarrow \uparrow$

$$
\begin{aligned}
& H_{\text {eff }}=-\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{1}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}\left(\begin{array}{cc}
2\left(U_{d}+\Delta_{p d}\right) & +J_{x y} \\
+J_{x y} & 2\left(U_{d}+\Delta_{p d}\right)
\end{array}\right) \\
& =-\left(\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}+\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{1}{2\left(U_{d}+\Delta_{p d}\right)-J_{x y}}\right) \quad \text { (as for same spin) } \\
& +\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{J_{x y}}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& \text { singlet-triplet splitting } \\
& J=-\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{2 J_{x y}}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}
\end{aligned}
$$

double exchange

double exchange involves both, full Coulomb matrix and hopping
mixed-valence compound: non-integer filling of d-orbital d-electrons can hop even when U is large
simple model: two sites with two orbitals each

double exchange

$$
H=\left(\begin{array}{ll}
-J_{a b} & -t_{b b} \\
-t_{b b} & -J_{a b}
\end{array}\right)
$$

$$
\varepsilon_{ \pm}=-J_{a b} \pm t_{b b}
$$

$$
\psi_{ \pm}=\frac{1}{\sqrt{2}}\left(|\uparrow, \uparrow\rangle_{1}|\cdot, \uparrow\rangle_{2} \pm|\cdot, \uparrow\rangle_{1}|\uparrow, \uparrow\rangle_{2}\right)=\frac{1}{\sqrt{2}}\left(|\uparrow, \cdot\rangle_{b} \pm|\cdot, \uparrow\rangle_{b}\right)|\uparrow, \uparrow\rangle_{a}
$$

b-electron hops against background of half-filled a-orbitals

double exchange

ground state

$$
\varepsilon_{0}=-J_{a b}-t_{b b}
$$

$$
\frac{1}{\sqrt{6}}\left(|\uparrow, \uparrow\rangle_{1}|\cdot, \downarrow\rangle_{2}+|\cdot, \uparrow\rangle_{1}|\uparrow, \downarrow\rangle_{2}+|\cdot, \uparrow\rangle_{1}|\downarrow, \uparrow\rangle_{2}+|\downarrow, \uparrow\rangle_{1}|\cdot, \uparrow\rangle_{2}+|\uparrow, \downarrow\rangle_{1}|\cdot, \uparrow\rangle_{2}+|\cdot, \downarrow\rangle_{1}|\uparrow, \uparrow\rangle_{2}\right)
$$

$$
=\frac{1}{\sqrt{2}}\left(|\uparrow, \cdot\rangle_{b}+|\cdot, \uparrow\rangle_{b}\right) \frac{1}{\sqrt{2}}\left(|\uparrow, \downarrow\rangle_{a}+|\downarrow, \uparrow\rangle_{a}\right)+\frac{1}{\sqrt{2}}\left(|\downarrow, \cdot\rangle_{b}+|\cdot, \downarrow\rangle_{b}\right)|\uparrow, \uparrow\rangle_{a}
$$

hopping electron aligns a-electrons ferromagnetically (teleports local triplet into triplet of a-electrons)

double exchange

double exchange

alternative model:
assume passive orbitals with many electrons (large Hund's rule spin) example: e_{g} electrons hopping against $t_{2 g}$ background consider these spins fixed with quantization axis tilted by ϑ relative to each other

rotation of quantization axis

$$
\begin{aligned}
& d_{2 b \uparrow}=\cos (\vartheta / 2) c_{2 b \uparrow}-\sin (\vartheta / 2) c_{2 b \downarrow} \\
& d_{2 b \downarrow}=\sin (\vartheta / 2) c_{2 b \uparrow}+\cos (\vartheta / 2) c_{2 b \downarrow}
\end{aligned}
$$

hopping mixes spins

$$
\begin{aligned}
& -t_{b b} c_{2 b \uparrow}^{\dagger} c_{1 b \uparrow}=-t_{b b}\left(+\cos (\vartheta / 2) d_{2 b \uparrow}^{\dagger}+\sin (\vartheta / 2) d_{2 b \downarrow}^{\dagger}\right) c_{1 b \uparrow} \\
& -t_{b b} c_{2 b \downarrow}^{\dagger} c_{1 b \downarrow}=-t_{b b}\left(-\sin (\vartheta / 2) d_{2 b \uparrow}^{\dagger}+\cos (\vartheta / 2) d_{2 b \downarrow}^{\dagger}\right) c_{1 b \downarrow}
\end{aligned}
$$

double exchange

assume a-spins cannot be flipped \Rightarrow no J terms
4 independent 4×4 Hamiltonians
for $t_{b b} \ll J_{a b}$ tilt merely reduces width of b-band

$$
\varepsilon_{ \pm}=-J_{a b} \pm t_{b b} \cos (\vartheta / 2)
$$

again, hopping of b-electron prefers ferro-aligned a-electrons

orbital ordering

same model, but now one electron per orbital

$H=\left(\begin{array}{cc|cc}0 & 0 & -t_{b b} & -t_{a a} \\ 0 & 0 & +t_{a a} & +t_{b b} \\ \hline-t_{b b} & +t_{a a} & U_{a b}-J_{a b} & 0 \\ -t_{a a} & +t_{b b} & 0 & U_{a b}-J_{a b}\end{array}\right)$
$H_{\text {eff }} \approx-\frac{1}{U_{a b}-J_{a b}}\left(\begin{array}{ll}t_{a a}^{2}+t_{b b}^{2} & -2 t_{a a} t_{b b} \\ -2 t_{a a} t_{b b} & t_{a a}^{2}+t_{b b}^{2}\end{array}\right)=-\frac{\left(t_{a a}-t_{b b}\right)^{2}}{U_{a b}-J_{a b}}-\frac{2 t_{a a} t_{b b}}{U_{a b}-J_{a b}}\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)$
effective interaction between orbitals: orbital singlet/triplet

orbital ordering: opposite spins

$$
\begin{aligned}
& \text { +- - }+ \text { + }- \text { - } \\
& H=\left(\begin{array}{cccc|cccc}
0 & 0 & 0 & 0 & -t_{b b} & -t_{a a} & 0 & 0 \\
0 & 0 & 0 & 0 & +t_{a a} & +t_{b b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -t_{b b} & -t_{a a} \\
0 & 0 & 0 & 0 & 0 & 0 & +t_{a a} & +t_{b b} \\
\hline-t_{b b} & +t_{a a} & 0 & 0 & U_{a b} & 0 & -J_{a b} & 0 \\
-t_{a a} & +t_{b b} & 0 & 0 & 0 & U_{a b} & 0 & -J_{a b} \\
0 & 0 & -t_{b b} & +t_{a a} & -J_{a b} & 0 & U_{a b} & 0 \\
0 & 0 & -t_{a a} & +t_{b b} & 0 & -J_{a b} & 0 & U_{a b}
\end{array}\right)
\end{aligned}
$$

orbital-ordering: opposite spin

$$
H_{\text {eff }} \approx-\frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left(\begin{array}{cccc}
\left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} U_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} & -2 t_{a a} t_{b b} J_{a b} \\
-2 t_{a a} t_{b b} U_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} J_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} \\
\left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} & -2 t_{a a} t_{b b} J_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} U_{a b} \\
-2 t_{a a} t_{b b} J_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} & -2 t_{a a} t_{b b} U_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b}
\end{array}\right)
$$

$$
=-\frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left(\begin{array}{cc}
U_{a b} & J_{a b} \\
J_{a b} & U_{a b}
\end{array}\right) \otimes\left(\begin{array}{cc}
t_{a a}^{2}+t_{b b}^{2} & -2 t_{a a} t_{b b} \\
-2 t_{a a} t_{b b} & t_{a a}^{2}+t_{b b}^{2}
\end{array}\right)
$$

$$
=-\frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left[U_{a b}+J_{a b}-J_{a b}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\right] \otimes\left[\left(t_{a a}-t_{b b}\right)^{2}+2 t_{a a} t_{b b}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\right]
$$

spin-exchange
simultaneous coupling of spins and orbital occupations spin- and orbital-exchange tend to have opposite sign
orbital-exchange

summary

exchange mechanisms

 dominant magnetic interaction in materials not a fundamental but an effective interaction: model/mechanismCoulomb exchange: off-diagonal Coulomb matrix-elements; ferromagnetic coupling (Hund's rule)
kinetic exchange: only diagonal Coulomb matrix-elements \& hopping
direct exchange: anti-ferromagnetic spins: virtual hopping -4t²/U
B superexchange: hopping via O-p orbitals
tends to be anti-ferromagnetic (180° superexchange)
but 90° superexchange is ferromagnetic
double exchange: hopping electrons align spins ferromagnetically
orbital ordering: exchange interaction between orbital occupations

summary

$$
H_{U}=\left(\begin{array}{cccc}
U_{a b}-J_{a b} & 0 & 0 & 0 \\
0 & U_{a b} & -J_{a b} & 0 \\
0 & -J_{a b} & U_{a b} & 0 \\
0 & 0 & 0 & U_{a b}-J_{a b}
\end{array}\right) \quad \frac{1}{1}+\frac{1}{1}
$$

Coulomb exchange: ferro (Hund's rule)
kinetic exchange: anti-ferro

summary

double exchange: often ferro

orbital-ordering

