Logo der Universität Wien
You are here:>University of Vienna >Faculty of Physics>Vienna Computational Materials Laboratory

Wednesday, 13. June 2018 10:28 Age: 4 yrs

Topologically protected vortex structures for low-noise magnetic sensors with high linear range

Category: Scientific Highlights

Published in Nature Electronics

Magnetsensoren entwerfen, die herkömmliche Technologien in Leistung und Genauigkeit übertreffen: Dazu publizierten ForscherInnen um Dieter Süss im Rahmen des Christian Doppler Labors "Advanced Magnetic Sensing and Materials".

Magnetische Sensoren spielen eine Schlüsselrolle in einer Vielzahl von Anwendungen, beispielsweise bei der Geschwindigkeits- und Positionserfassung in der Automobilindustrie oder in der biotechnologischen Messtechnik. Wie man neuartige Magnetsensoren entwerfen kann, die herkömmliche Technologien in Leistung und Genauigkeit übertreffen, zeigten nun WissenschafterInnen unter der Leitung von Dieter Süss in einer Kooperation zwischen der Universität Wien, der Donau Universität Krems und der Infineon AG im Rahmen des Christian Doppler Labors "Advanced Magnetic Sensing and Materials". Die neue Entwicklung präsentieren die ForscherInnen in der jüngsten Ausgabe des Fachjournals "Nature Electronics".

Viele moderne technologische Anwendungen beruhen auf magnetischen Kräften z.B. um Bestandteile in Elektrofahrzeugen zu bewegen oder Daten auf Festplatten zu speichern. Magnetische Felder werden aber auch als Sensoren eingesetzt, um andere magnetische Felder nachzuweisen. Der Gesamtmarkt für Magnetfeldsensoren, die auf Halbleitertechnologie beruhen, umfasst derzeit 1.670 Mio USD und wächst massiv weiter. In der Automobilindustrie werden beispielsweise genauere Magnetfeldsensoren in ABS-Systemen eingesetzt, mit denen man auf den Reifendruck zurückschließen kann. Somit werden keine zusätzlichen Drucksensoren in den Reifen benötigt und Ressourcen und Kosten gespart. Der Einsatz neuer magnetoresistiver Sensortechnologien wie anisotroper Magnetowiderstand, Riesenmagnetowiderstand und Tunnelmagnetowiderstand wird vor allem durch ihre erhöhte Empfindlichkeit und verbesserte Integrationsfähigkeit vorangetrieben.

Das Herzstück neuartiger Magnetfeldsensoren ist ein mikrostrukturiertes ferromagnetisches Dünnschichtelement, das magnetische Signale umwandeln kann. Dieses sogenannte Wandlerelement ändert sein elektrisches Verhalten, sobald ein Magnetfeld von außen angelegt wird: Seine atomaren "Kompassnadeln", die atomaren magnetischen Dipole, werden neu ausgerichtet und ändern damit den elektrischen Widerstand des Wandlerelements. Dieses Verhalten wird zur Bestimmung der Magnetfelder verwendet.

Die Leistungsfähigkeit der Sensoren wird jedoch durch einige Faktoren erheblich eingeschränkt. Deren Ursachen und Zusammenhänge hat nun ein Team unter der Leitung von Dieter Süss in einer Kooperation zwischen der Universität Wien, der Donau Universität Krems und der Infineon AG im Rahmen des Christian Doppler Labors "Advanced Magnetic Sensing and Materials" genau analysiert. Die Ergebnisse ihrer Untersuchungen sowie konkrete Lösungsvorschläge veröffentlichten sie kürzlich im Fachjournal Nature Electronics.

Die WissenschafterInnen zeigten durch Computersimulationen, die mittels Experimente validiert wurden, dass sowohl Störsignale, magnetisches Rauschen, als auch die Hysterese durch eine Neugestaltung des Wandlerelements deutlich reduziert werden können. Im neuen Design sind die atomaren magnetischen Dipole des Wandlerelements kreisförmig um ein Zentrum, ähnlich wie bei einem Wirbelsturm, ausgerichtet. Ein von außen angelegtes Magnetfeld ändert die Position des Zentrums dieses Wirbels, was wiederum direkt zu einer Änderung des elektrischen Widerstandes führt. "Diese Entwicklung zeigt die erste massentaugliche Anwendung von magnetischen Wirbelzuständen und eine signifikante Verbesserung gegenüber herkömmlichen Magnetsensoren", sagt Projektleiter Dieter Süss. Das Forschungsprojekt ist ein hervorragendes Beispiel, wo Grundlagenforschung und rein wissenschaftliche Fragestellungen, wie das Verhalten von magnetischen Wirbelstrukturen in äußeren Magnetfeldern, zu äußerst erfolgreichen Anwendungen führen können. "Voraussetzung dafür ist die Kooperation zwischen Wissenschaft und Industrie, wobei die Industrie sowohl die praktisch relevanten Fragestellungen bereitstellen als auch über technische Anlagen wie Reinräume für die Realisierung dieser aufwendigen Technologien verfügen", meint Süss über diese wichtige Synergie.

Project part: P12 Multiscale simulations of magnetic nanostructures

Original publication: "Topologically protected vortex structures for low-noise magnetic sensors with high linear range", Dieter Süss, Anton Bachleitner-Hofmann, Armin Satz, Herbert Weitensfelder, Christoph Vogler, Florian Bruckner, Claas Abert, Klemens Prügl, Jürgen Zimmer, Christian Huber, Sebastian Luber, Wolfgang Raberg, Thomas Schrefl & Hubert Brückl

DOI:10.1038/s41928-018-0084-2


VIENNA COMPUTATIONAL MATERIALS LABORATORY

Sensengasse 8/12
A-1090 Vienna
AUSTRIA
T: +43-1-4277-51401
F: +43-1-4277-9514
E-Mail
University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0
Lastupdate: 29.09.2014 - 12:13